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ABSTRACT 

Mycobacterial DNA gyrase B subunit is one of the potential drug targets in the field of antitubercular drug discovery. 
Fluoroquinolones targeting gyrase A subunit have been facing a major hurdle of their resistance developed by Mtb which 
makes gyrase B subunit a druggable target for discovery of potent anti-tubercular agents. DNA gyrase B subunit is 
involved in the process of ATP hydrolysis which in turn provides energy to gyrase A subunit for maintaining the DNA 
topological state. In the present study, we employed structural optimization of the reported GyrB inhibitor possessing 
quinoline nucleus. QSAR studies were carried out by QSARINS software on 4-aminoquinoline derivatives for Mtb gyrase B 
inhibitory activity.  The best model had four variables L1i, MoRSEN26, RDFM5 and RDFE25 with statistical values R2 = 
0.7430, LOF=0.0608, CCCtr = 0.8525, Q2LOO = 0.6461, Q2LMO = 0.6189, CCCcv = 0.7972, R2ext = 0.8294, and CCCext = 0.8898. 
The developed qsar model suggests that the 3D WHIM, MoRSE and RDF descriptors play key roles and were extremely 
helpful in predicting bioactivity. Molecular docking studies were performed using Autodock v 4.2.6 and the residues of 
active site region involving both hydrophilic and hydrophobic parts interacted with best experimentally active 
compounds and designed compounds. Based on predicted docking interactions in the active site of enzyme, molecular 
dynamics simulations were carried out for 30ns using GROMACS 2020 to predict complex stability. RMSD, RMSF and Rg 
analysis were performed on 3zkd protein in complex with compound 16 and best designed compound 8e. The MDS results 
were found to be satisfactory with compound 8e exhibiting better conformational stability in the active site pocket of 
3zkd protein. 
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INTRODUCTION 
It is estimated that tuberculosis will rank as the subsequent leading cause of death from a single 
infectious agent, next to COVID-19. Worldwide, tuberculosis (TB) caused by Mycobacterium tuberculosis, 
continues to be one of the deadliest infectious diseases with mortality rate of around 1.3 million lives in 
2020 as reported by World Health Organization (WHO) [1]. Although TB can be treated with the 
commonly used drugs such as isoniazid, rifampicin, ethambutol, and pyrazinamide, unfortunately, it has 
been reported that TB treatment is hampered by resistance of M. tuberculosis to available therapies. The 
noncompliance to treatment regimens has led to the development of drug resistance in a self-sustaining 
process that has resulted in some forms of TB being untreatable by currently available anti-tuberculosis 
drugs. The rapid emergence of multi-drug-resistant (MDR) and extremely drug-resistant (XDR) 
Mycobacterium tuberculosis (M. tuberculosis) strains have now been recognized as a major challenge for 
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global TB control measures [2]. Consequently, there is a need to improve the existing standard treatment 
for MDR-TB to improve patient survival rates. 
The enzymes that manage DNA reorganization (DNA topoisomerases), act by creating transient local DNA 
breaks in one or both strands of the DNA double helix (type I and type II topoisomerases respectively) 
and passing second DNA segments through the breaks. Whereas type I DNA topoisomerases are ATP-
independent monomeric enzymes, type II topoisomerases are large macromolecular machines 
(homodimers or heterotetramers) that use ATP to drive conformational changes associated with the 
double-stranded DNA transfer events. Bacterial type IIA topoisomerases are made up of two subunits, 
GyrA or ParC and GyrB or ParE, for DNA gyrase and Topo IV respectively, which form the catalytically 
active heterotetrameric enzymes [3].  
DNA gyrase and Topo IV subunits share similar functional and structural arrangements and are thought 
to be paralogues that resulted from gene duplication of an ancestral type IIA topoisomerase. Subunits 
GyrB and ParE consist of two domains, the N-terminal ATPase and the C-terminal Toprim domain, 
whereas GyrA and ParC consist of the N-terminal BRD (breakage–reunion domain) followed by the CTD 
(C-terminal domain). Dynamic interactions between these two subunits couple ATP binding. Hydrolysis 
with DNA binding, cleavage and strand transport physically move one DNA duplex through another [4]. 
Although Topo IV and DNA gyrase are homologous, their substrate selection and activity are strikingly 
different. DNA gyrase introduces a right-handed wrap in the DNA which, after strand passage, results in 
the introduction of negative supercoils thereby assisting in the underwinding of bacterial genomes. In 
contrast, Topo IV preferentially relaxes DNA supercoils, being more active on positively rather than on 
negatively supercoiled DNA, and is a robust DNA decatenase [5].  
In addition to playing a crucial role in cellular events such as replication, recombination and 
transcription, bacterial DNA gyrase and Topo IV are the targets of a major family of antibiotics, the 
fluoroquinolones. Fluoroquinolones targeting gyrase A subunit have been facing a major hurdle of their 
resistance developed by Mtb which makes gyrase B subunit a druggable target for the discovery of potent 
anti-tubercular agents [6]. DNA gyrase B subunit is involved in the process of ATP hydrolysis which in 
turn provides energy to gyrase A subunit for maintaining the DNA topological state [7]. These antibiotics 
form the cornerstone of several treatments for infections with major pathogens, such as multidrug-
resistant tuberculosis. 
For this reason, inhibitors targeting different steps of this pathway are capturing the attention of TB drug 
research. TMC207 (diarylquinoline), an antitubercular drug in Phase II trials acts by inhibiting the 
enzyme mycobacterial adenosine triphosphate (ATP) synthase. Many of quinoline and quinolone series 
were prescribed in combination with first-line and second-line antimycobacterial drugs [8]. One of the 
rational and successful methods in drug design is quantitative structure-activity relationship, playing a 
key role in optimizing leads and thereby improving their biological activity [9]. We explore the 
possibilities of finding new quinoline-based antimycobacterial leads. In this context, we have reported 
thoroughly validated in-silico studies on triazole benzene sulphonamide as carbonic anhydrase IX 
inhibitors [10]. It is important to note, developed and validated Qsar model also helps in the prediction of 
the biological activity of new chemical entities even before its synthesis. 
In continuation to the work in identification and development of novel leads using QSAR, molecular 
docking as well as dynamic simulation tools, we herein report a series of novel 4-aminoquinoline 
derivatives as inhibitors of Mtb DNA gyrase B. The dataset was subjected to QSAR study for predicting the 
role of substituent on biological activity by generating efficient models, which are capable of estimating 
bioactivities with extensive parameters available within the software. We were also interested in 
investigating the structural features in optimizing the lead for the inhibition of Mtb DNA gyrase B. 
Molecular dynamics simulations were also performed at a time scale of 30 ns for selected compounds to 
identify stability of the protein-ligand complex, fluctuations and H-bond network. 
 
MATERIAL AND METHODS 
‘QSARINS’ allows developing multiple linear regression models by ordinary least squares, attentively 
verified and in detail validated according to the chemometric approach. A series of 46 compounds dataset 
(Table 1) of 4-aminoquinoline derivatives with Mtb gyrase B inhibitory values were taken from reported 
literature [11]. MIC values were converted to corresponding pMIC and used as the dependent variable. 
Molecule structure preparation and 3D geometry optimization 
Mentioned molecular structures were constructed and geometry optimized by Avogadro V1.2.0 [12] on 
adding hydrogens. MMFF94, the molecular mechanics force field was employed along with the steepest 
descent algorithm. For each compound, best conformer with global minimum energy is obtained from 
Avogadro tool by genetic algorithm with the scoring function ‘energy’ and the same conformer was used 
throughout the study. 
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Data setup 
Fore mentioned compounds were calculated for molecular descriptor values from online padel tool of 
chemdes - chemopy servers [13]. The variables were organized and pre-filtered by excluding all-zero 
value, missing value and constant value (>50%) descriptors. The pairwise correlation is used to filter out 
descriptors with more than 0.85 values. From the correlation matrix developed using all filtered 
descriptors, 3D WHIM, MoRSE and RDF descriptors were shown better correlation towards activity and 
thus, they were preferred for this study. From the screening of descriptors, a total of 32 variables with 
cut-off correlation value of greater than 0.36, were selected for the study. Forty-six molecules included in 
the study were divided into training and prediction set in the ratio of 5:1 based on order by the response. 
Out of many trials and models developed, we present here only the best models. 
Variable selection and model calculation 
The QSARINS software explores all combinations of selected descriptors as defined by user options [14]. 
The genetic algorithm is used for descriptor selection relational to biological activities of molecules along 
with Friedman's ‘lack-of-fit’ (LOF) function, to evaluate the fitness of models. LOF smoothness level is 
kept at default level of 1.0. Along with genetic algorithm, user-defined parameters like mutation 
probability (0.1), population size (200) and maximum generations (5000) explore more combinations 
[15]. 
Model validation 
The models developed in QSARINS undergo rigorous validation both internal and external and also 
applicability domain of the model is checked. Internal validation by cross-validation leave-one-out 
(Q2LOO), cross-validation leave-many-out (Q2LMO), root mean squared error (RMSE), Y-Scrambling and 
external validation by Q2F1, Q2F2, Q2F3 and CCC were applied on selected models. Q2LMO is repeated 5000 
times with 30% objects left randomly from the set of training each time. Y-scrambling by 5000 iterations 
method involves shuffling of response data, to exclude chance correlation in the original model. It is 
worthy to note, R2 and Q2loo of the model must be reasonably higher than scrambled ones and RMSE of 
the model under prediction must be reasonably smaller than scrambled ones. To evaluate reproducibility 
of models, concordance correlation coefficient (CCCext) is analyzed. Applicability domain is a theoretical 
region in modeling defined by descriptors employed and is evaluated by leverage analysis. The leverage 
(hat) is calculated by hi = xi (XT X)-1 xTi (i=1, 2, 3, upto m), where xi is the descriptor row-value of the query 
compound i and m is the number of query compounds. X is n x p matrix of training set, where n is number 
of training set samples and p is number of model descriptors. The limit of model domain, leverage cut-off 
value, h* is 3(p+1)/n. Leverage greater than h* for the training set means the sample is highly influential 
in determining the model, while the test set (X outlier), the prediction is an extrapolation of the model. 
Any compound with standardized residual more than 3σ (3 standard deviation units) is identified as Y 
outlier. 
Molecular docking studies 
In combination with the developed qsar model, affinities and interactions of Mtb gyrase B inhibitors were 
estimated using Autodock V4.2.6 [16]. The initial structure of the 3D structure of Mtb GyrB ATPase 
domain, pdb id: 3ZKD is obtained from protein data bank (w3.rcsb.org). Using Modeller V9.23 program 
[17] missing residues were fixed along with addition of hydrogen atoms and removal of existing ligands. 
Redocking co-crystallized ligand to 3ZKD was performed to identify docking parameters which will be 
helpful for docking designed compounds. All the ligand structures were constructed and geometry 
optimized using Avogadro V1.2.0 by the MMFF94 force field, steepest descent algorithm with 
convergence parameter set to10e-7.  
Protein was prepared by adding polar hydrogens geometrically and Kollman's united atom charges were 
assigned to create pdbqt file. Protonation states of histidine residues were addressed by assigning ND1 
state to zinc bound histidines and NE2 to remaining histidines. Ligand preparation by adding gasteiger 
charges is done along with the addition of polar hydrogens. Torsions were identified in ligands and pdbqt 
file is generated.  
Autogrid option renders a selection of active site and grid size was set to 60*60*60 points with spacing of 
0.375 Å and a distance-dependent function of dielectric constant was used for the calculation of energetic 
map. The grid box includes the active binding site of the enzyme with enough space for the ligand 
rotational and translational walk. 
Lamarckian genetic algorithm was used for exploring ligand conformation poses, orientations inside the 
active site of Mtb gyrase B. The optimized parameters were as follows; maximum number of energy 
evaluations was increased to 25,000,000 per run, the number of individuals in the population was 150, 
maximum number of generations was 2700 along with rate of gene mutations to 0.02. All other 
parameters were set to default. Results differing by <2 Å in a positional RMSD were clustered together. In 
each group, the lowest binding energy configuration with the highest percentage frequency was selected 
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as the group representative. Representations of ligand poses and interactions were generated and 
presented in the figure by Biovia Discovery studio visualizer version 2021 [18] program. 
Molecular Dynamics Simulations 
Based on Autodock binding energy of protein-ligand complexes, the best ligands from original dataset as 
well as designer series were identified and taken over for molecular dynamics simulations to study the 
physical changes in the atoms and molecules upon interacting with solvent environment using GROMACS 
2022 package [19]. The topology parameters for 3ZKD (DNA Gyrase B) protein were generated by 
GROMACS using Charmm36-Jul-2020.ff force field [20], where as for ligands, external tools were applied 
to create stream file from CGenFF web server followed by python module to generate itp files. Protein-
ligand complex file is generated using obtained topology and coordinates information following solvation 
by TIP3P water molecules in a defined unit cell. Counter ions were added to balance the solvated system. 
The complex was placed in a cubic periodic box and the minimum distance between the complex and the 
box walls was set to larger than 10 Å. The complex was comprised of 5740 atoms in the 3ZKD protein. 
Prior to simulation, energy minimization was performed to full system without constraints using steepest 
descent integrator for 50,000 steps. Finally, the system upon converging resulted required negative 
potential energy mark and Fmax not greater than 1000 KJ / mol / nm2. The system was then equilibrated 
for 200 ps of NVT & NPT ensemble each, applying the position restraints on protein, inhibitors and 
counter ions at 300 K with periodic boundary conditions. 
The temperature was kept constant by a Berendsen thermostat, while the pressure was maintained at 1 
bar using a Parrinello-Rahman scheme [21]. The electrostatic interactions were calculated using the 
Particle Mesh Ewald method & cut-off distances for the calculation of coulomb and van der Waals 
interactions were 1.2 nm during the equilibration. Finally, the system was subjected to 30 ns molecular 
dynamics simulations at a temperature of 300 K (V-rescale thermostat) and a pressure of 1 bar 
(Parrinello-Rahman barostat). A periodic boundary condition was imposed on the system and the motion 
equations were integrated by applying the leap-frog algorithm with a time-step of 2 fs. The dynamic 
trajectories were recorded every pico-second during the production stage for further analysis.  
 
RESULTS AND DISCUSSION 
Model information 
A dataset of 46 molecules from quinolone series with inhibitory activity were considered for the study. 
The molecules were optimized for geometry and by using MMFF94. ~ 3000 descriptors were calculated 
using Padel, Chemopy-chemdesc, RDKit and Bluedesc server. The dataset was divided into training and 
test based on their chemical and biological diversity. Several qsar model equations were generated using 
QSARINS. Some of the models showed higher R2 and Q2LOO values but their external validation was not 
good and they also showed a good number of outliers. For practical use of QSAR model, cross validated 
performance (robustness) and external predictive capacity (predictability) were good parameters. The 
model 1 developed with fore mentioned options gave statistical parameters as, 
Model 1: 
pMIC = 3.2790 + 0.0338 (L1i) + 3.0485 (MoRSEN26) + 0.0477 (RDFM5) + 0.0349 (RDFE25) 
ntr = 39, npred = 07, R2 = 0.4936, R2adj = 0.4340, R2-R2adj = 0.0596, LOF = 0.1312, RMSEtr = 0.2879, MAEtr = 
0.2199, RSStr = 3.2319, CCCtr = 0.6609, s=0.3083, F=8.2844, Q2LOO = 0.3423, Q2LMO = 0.3022, R2Yscr = 
0.1071, Q2Yscr = -0.1839, RMSEcv = 0.3281, MAEcv = 0.2528, PRESScv = 4.1977, CCCcv = 0.5635, R2ext = 
0.3987, MAEext = 0.1909, PRESSext = 0.4735, RMSEext = 0.2601, CCCext = 0.6169, Q2F1 = 0.3673, Q2F2 = 
0.3618, Q3F3 = 0.5866. 
This model showed up two outliers (compound 17 and 37) in William's plot, with high RMSE values and 
low Q2LOO, Q2LMO values. On removal of two structures models were generated and validated. 
Model 2: 
pMIC = 2.9281 + 0.0434 (L1i) + 3.1282 (MoRSEN26) + 0.0514 (RDFM5) + 0.0344 (RDFE25) 
ntr = 37, npred = 07, R2 = 0.6404, R2adj = 0.5954, R2-R2adj = 0.0450, LOF = 0.0891, RMSEtr = 0.2340, MAEtr = 
0.1798, RSStr = 2.0252, CCCtr = 0.7808, s=0.2516, F=14.2442, Q2LOO = 0.5271, Q2LMO = 0.4851, R2Yscr = 
0.1122, Q2Yscr = -0.1976, RMSEcv = 0.2683, MAEcv = 0.2082, PRESScv = 2.6628, CCCcv = 0.7139, R2ext = 
0.4105, MAEext = 0.2244, PRESSext = 0.6026, RMSEext = 0.2934, CCCext = 0.5451, Q2F1 = 0.2780, Q2F2 = 
0.2494, Q3F3 = 0.4344. 
Even though after removing outliers from model 1, model 2 showed up compound 10 and 36 as outliers 
in William's plot, which provoked to study the effect of removing these outliers.  Additionally, the external 
validation parameters Q2F1, Q2F2, Q2F3, and CCCext gave lessened statistical values compared to model 1.  
Model 3: 
pMIC = 2.8467 + 0.0431 (L1i) + 3.1683 (MoRSEN26) + 0.0539 (RDFM5) + 0.0412 (RDFE25) 
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ntr = 35, npred = 07, R2 = 0.6790, R2adj = 0.6376, R2-R2adj = 0.0414, LOF = 0.0797, RMSEtr = 0.2196, MAEtr = 
0.1741, RSStr = 1.7364, CCCtr = 0.8088, s=0.2367, F=16.3933, Q2LOO = 0.5777, Q2LMO = 0.5489, R2Yscr = 
0.1159, Q2Yscr = -0.2047, RMSEcv = 0.2519, MAEcv = 0.2023, PRESScv = 2.2846, CCCcv = 0.7486, R2ext = 
0.7890, MAEext = 0.1472, PRESSext = 0.1639, RMSEext = 0.1653, CCCext = 0.8789, Q2F1 = 0.7321, Q2F2 = 
0.7314, Q3F3 = 0.8789. 
Two outlier compounds 12, 40 in williams plot were found and statistical values were improved when 
compared to previous models and hence further studies were carried by removing outliers. 
Model 4: 
pMIC = 2.8063 + 0.0475 (L1i) + 3.3770 (MoRSEN26) + 0.0456 (RDFM5) + 0.0394 (RDFE25) 
ntr = 34, npred = 06, R2 = 0.7430, R2adj = 0.7075, R2-R2adj = 0.0355, LOF = 0.0608, RMSEtr = 0.1886, MAEtr = 
0.1559, RSStr = 1.2096, CCCtr = 0.8525, s=0.2042, F=20.9550, Q2LOO = 0.6461, Q2LMO = 0.6189, R2Yscr = 
0.1226, Q2Yscr = -0.2213, RMSEcv = 0.2213, MAEcv = 0.1842, PRESScv = 1.6655, CCCcv = 0.7972, R2ext = 
0.8294, MAEext = 0.1417, PRESSext = 0.1590, RMSEext = 0.1628, CCCext = 0.8898, Q2F1 = 0.7550, Q2F2 = 
0.7488, Q3F3 = 0.8086. 
Model 4 obtained shows good fitting criteria, both internal and external validation values. Compared with 
previous models, it shows betterment in external validation parameter values with no outliers in 
William's plot. The descriptor correlation matrix of model 4 is presented in Supplementary Table 1. The 
scatter plot of the experimental vs. the calculated Mtb gyrase B inhibitory activities of 4-aminoquinolines 
is shown in figure 1(left), displaying predicted values similar to corresponding experimental values. The 
resulted Kxy (the inter-correlation among descriptors and response) vs. Q2LMO of final model were plotted 
in figure 1(right) which shows the LMO parameter values were around the model parameters, meaning 
the model is robust and stable. Figure 2(left) displays the Y-scramble plot of Kxy vs. R2Yscr and Q2Yscr, which 
shows correlation coefficients of the final model are much higher than those after endpoint scrambling 
and a broken relationship can be noticed between structure and responses.  
The Williams plot, standardized residuals vs. leverage values shown in Figure 2(right), was used to 
illustrate the prediction and express the applicability domain of the model. From William's plot, it can be 
seen that all the molecules are located in the applicability domain of the model with leverage values lower 
than the warning h* of 0.441. The values of Q2F1, Q2F2 and Q2F3 are greater than threshold of 0.70 and 
of better value along with with elevated CCC (concordance correlation coefficient) parameter values 
greater than 0.80. All these results state the best model obtained is not by chance and truly there is a 
relationship between structures of 4-aminoquinolines analogs with corresponding Mtb gyrase B 
inhibitory activity.  
Molecular descriptors information 
WHIM (Weighted Holistic Invariant Molecular) descriptors [22] are 3D molecular indices that represent 
different sources of chemical information. WHIM descriptors like L1i, 1st component size directional 
WHIM index / weighted by relative first ionization potential, contain information about the whole 3D 
molecular structure in terms of size, shape, symmetry and atom distribution [23]. These indices are 
calculated from x,y,z-coordinates of a 3D structure of the molecule, usually from a spatial conformation of 
minimum energy, within different weighting schemes in a straightforward manner and represent a very 
general approach to describe molecules in a unitary conceptual framework. The WHIM descriptor 
approach has also been extended to treat interaction scalar fields: G-WHIM (Grid-Weighted Holistic 
Invariant Molecular) descriptors are defined and calculated from the coordinates of the grid-points where 
an interaction energy field between the molecule and a probe has been evaluated [24]. 
WHIM descriptors are built in such a way that they capture relevant molecular 3D information regarding 
molecular size, shape, symmetry and atom distribution with respect to invariant reference frames. The 
algorithm consists of performing a principal component analysis on the centered molecular coordinates 
by using a weighted covariance matrix S obtained from different weighting schemes for the atoms. The 
elements of the covariance matrix are: 

 
Where n is the number of atoms, wi the weight of the i-th atom, qij represents the j-th coordinate (j = 1, 2, 
3) of the i-th atom and qj¯ is the average of the j-th coordinates. 
Six different weighting schemes have been proposed: (1) the unweighted case U (wi = 1, i = 1, n, where n is 
the number of atoms for each compound), (2) atomic masses M (wi = mi), (3) the van der Waals volumes V 
(wi = vdwi), (4) the Mulliken atomic electronegativities E (wi = elni), (5) the atomic polarizabilities P (wi = 
poli) and (6) the electrotopological indices of Kier and Hall S (wi = Si). All the weights (1) to (5) are also 
scaled with respect to the carbon atom. 
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3D-MoRSE [25] meaning 3D molecular representations of structure based on electron diffraction 
descriptors were predominant in a number of QSAR/QSPR studies. These descriptors provide molecule 
structure information derived from euclidean interatomic distances, scattering parameter (0-31 integer 
values) and weighting by atomic properties like atomic charges (MoRSEC9, where 9 is scattering 
parameter), atomic mass (MoRSEM15), atomic number (MoRSEN26), atomic van der Waals volume 
(MoRSEV23), Sanderson electronegativity (MoRSEE12) and atomic polarizability (MoRSEP4) as well as 
unweighted (MoRSEU13).  
Simplified equation from electron diffraction studies to determine MoRSE function: 

 
where s is the scattering parameter, rij is the euclidean distance between i th and j th atoms, N is the total 
number of atoms and Ai and Aj are different atomic properties used as weights. Each term of this function 
depends on distance and thus may be viewed as a radial basis function itself. 
Weighting descriptors make the compound sensitive to the presence of specific molecule fragments. For 
instance, weighting atomic partial charge reflects distance between atoms with excessive or deficient 
electron density. The 3D-MoRSE descriptors weighted with schemes where the role of hydrogen is 
diminished should exhibit lower variation with increasing scattering parameter. The lowest relative 
variation is observed for atomic mass, atomic number, van der Waals volume and polarizability 
weightings as reported in literature. The impact of different interatomic distances can be identified by 
dynamics of cumulative sum of 3D-MoRSE terms ordered by interatomic distance. If increasing values of 
some 3D-MoRSE descriptors lead to increase in biological activity, then atomic groups that contribute to 
the 3D-MoRSE descriptor mostly are preferential for activity. 3D-MoRSE descriptors interpretation can be 
done by estimating favourable optimal range MoRSE values needed for best activity and finding 
favourable interatomic distance inactive compounds that are compared to non-actives. 
The 3D coordinates of the atoms of molecules can be transformed into a structure code that has a fixed 
number of descriptors irrespective of the size of a molecule. This task is performed by a structure coding 
technique referred to as a radial distribution function code (RDF code) [26]. In general, there are some 
prerequisites for a structure code: 

 independent from the number of atoms, i.e., the size of a molecule, 
 unambiguity regarding the three-dimensional arrangement of the atoms, and 
 Invariance against translation and rotation of the entire molecule. 

Formally, the radial distribution function of an ensemble of N atoms can be interpreted as the probability 
distribution to find an atom in a spherical volume of radius r. The equation represents the radial 
distribution function code as it is used in this investigation: 

 
Where f is a scaling factor and N is the number of atoms. By including characteristic atomic properties, a 
of the atoms i and j, the RDF codes can be used in different tasks to fit the requirements of the information 
to be represented. The exponential term contains the distance rij between the atoms i and j and the 
smoothing parameter B, which defines the probability distribution of the individual distances. g(r) was 
calculated at a number of discrete points with defined intervals. 
The atomic properties Ai and Aj used in this equation enable the discrimination of the atoms of a molecule 
for almost any property that can be attributed to an atom [27]. Such distribution function provides, 
besides information about interatomic distances in the whole molecule, the opportunity to gain access to 
other valuable information, e.g., bond distance, ring types, planar and non-planar systems and atom types. 
This fact is the most valuable consideration for a computer-assisted code elucidation. The radial 
distribution function in this form meets the entire requirement mentioned above, especially invariance 
against linear translations. In total, the best model molecular descriptors contributed to structural 
information relating predicted bioactivity [28].  
SAR Studies of the original dataset 
Utilizing molecular descriptors information obtained from QSAR studies, a self-explorative study on the 
dataset was performed to identify the model efficiency and accuracy. Residuals from the difference 
calculated between experimental and predicted bioactivity values were almost near to zero, meaning 
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validated model generation and effective prediction (Table 2). Further using structure function 
relationship values from dataset, meaningful information was depicted.  
Substitutions on R1 position of quinoline ring with ethoxy, R position with trifluoromethyl, X with amino 
and Y with ethylamino groups lead to best-predicted activity as depicted in compound 16. Upon changing 
amino group of X position to oxygen group, loss of activity is seen except in case of methoxy substituent at 
R position of compound 10. Replacing alkyl amino group at Y position to oxygen group leads to 
diminished activity as seen in compound 4 and 8.  
Substitution on R1 position of quinoline ring with hydrazine group, R position with trifluoromethyl, X 
with amino and Y with ethylamino groups lead to diminished activity as depicted in compound 32. 
Replacing amino group of X position to oxygen group and alkyl-amino group at Y position to oxygen 
group leads to loss of activity as seen in compound 20. Substitution on R1 position of quinoline ring with 
hydroxyl group, R position with methoxy, X with oxygen and Y with ethylamino groups lead to increased 
activity as depicted in compound 42 compared to compound 46. 
New compounds were designed with varying substituents on the core structure and molecular descriptor 
values were calculated from online padel tool of chemdes - chemopy servers. Table 3 display predicted 
activities of best designed compounds from the QSAR model 4 (Supplementary table 2 display full list of 
designed compounds). The best activity compounds from the original dataset (11, 12, 16, 17 and 31) and 
the designer series (8e, 9c, 9d, 10c, 11a, 11b, 12a, and 12c) were selected for molecular docking studies to 
predict favourable H-bonds interactions and binding scores.  
Molecular docking studies 
H-bond interactions were seen in compound 11 with the residues Asn309, Trp47, Thr371, His311 and 
Glu312 of 3zkd protein. Compound 11 with ethoxy group at R1 position interacted with Asn309 and 
Thr371 by hydrogen bonding followed by oxygen of ligand ethoxy group with Trp47. Alkyl group near X 
position interacted with Glu312 using H-bond. The best active site conformation from Autodock result the 
binding affinity of compound 11 with 3ZKD protein as -8.4 K Cal / mol. Similarly, H-bond interactions 
were predicted in compound 12 with the residues Asn309, His44, Arg40, Thr371, His311, Glu312 and 
Gln370 of 3zkd protein. Compound 12 display H-bonds near to R1 position with Arg40 and Thr371 
followed by oxygen at X position interaction with His44. Asn309 interacted with piperazine N atom 
forming a favorable H-bond. Trifluoro group of compound 12 interacted well with Gly369. The best active 
site conformation from Autodock result the binding affinity of compound 12 with 3ZKD protein as -7.6 K 
Cal / mol. 
Again, H-bond interactions were seen in compound 16 with the residues Asn309 and Trp47 of 3zkd 
protein. Compound 16 with ethoxy group at R1 position interacted with Asn309 and Thr371 by hydrogen 
bonding followed by H-bond of alkyl group near X position interacted with Glu312. Trifluoro group of 
compound 16 interacted well with Glu39 and Arg40. The best active site conformation from Autodock 
result the binding affinity of compound 16 with 3ZKD protein as -8.7 K Cal / mol. Similarly, H-bond 
interactions were predicted in compound 17 with the residues Asn309, Arg40, Thr371, His311 and Trp47 
of 3zkd protein. Compound 17 display H-bonds near to R1 position with Trp47, Asn309 and Thr371. The 
best active site conformation from Autodock result the binding affinity of compound 17 with 3ZKD 
protein as -8.1 K Cal / mol. Further, H-bond interactions were predicted in compound 31 with the 
residues Asn309, Trp47, Glu312 and His44 of 3zkd protein. Compound 31 display Pi interactions with 
Arg40 and His311. The best active site conformation from Autodock result the binding affinity of 
compound 31 with 3ZKD protein as -8.3 K Cal / mol. 
With various substituents at R, R1, X positions and keeping Y position fixed to N-ethyl group, designer 
series resulted few best leads based on PMIC values using QSAR model 4. These leads were evaluated for 
H-bond interactions and binding scores using molecular docking studies. Residue interactions with His44, 
Trp47, Asn309 and His311 were common in almost all the designed compounds giving preference to H-
bonding. The results were presented in Table 4 with interacting residues, binding affinity scores from 
Autodock as well as PMIC values from QSAR model 4. The results were favorable giving importance to 
model equation descriptors supporting QSAR studies. In general, the molecular descriptors (weighted or 
unweighted) of obtained qsar model and type of molecular docking interactions (charged, hydrogen bond, 
dipole-dipole, van der Waals, pi-cation, etc.), were correlated and found to be in association with each 
other. RDF, WHIM and MoRSE descriptors weighted with Ionization potential, electonegativity indices 
were in relation to fluorine group charged interactions with arginine, histidine residues. Figure 3 shows 
the docking interactions of best compounds with 3ZKD from Discovery studio visualiser (Remaining 
docking results were displayed in Supplementary figures 1 to 5). 
To confirm the interactions and stability in the active site of Mtb DNA Gyrase B, compound 16 of dataset 
and designed compound 8e were taken over for molecular dynamics simulations using GROMACS 
package.  
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Figure 1. Scattered plot left and LMO Plot Right 

 

 
Figure 2. Y Scrambles plot left and Williams plot right 

 

 
Figure 3. Molecular docking results a). Compound 6 and b). Compound 8e 
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Figure 4. RMSD 

 
Figure 5. RMSF 

 
Figure 6. Radius of Gyration (nm) 
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Table 1. Dataset compounds with Mtb Gyrase B inhibitory activity 

 
S.No R R1 X Y MIC (µM) pMIC 

1 H OC2H5 O O 28.7 4.542118 
2 OCH3 OC2H5 O O 13.35 4.874519 
3 F OC2H5 O O 21.72 4.66314 
4 CF3 OC2H5 O O 43.1 4.365523 
5 H OC2H5 NH O 14.38 4.842241 
6 OCH3 OC2H5 NH O 23.36 4.631527 
7 F OC2H5 NH O 13.45 4.871278 
8 CF3 OC2H5 NH O 49.75 4.303207 
9 H OC2H5 O NC2H5 13.51 4.869345 

10 OCH3 OC2H5 O NC2H5 11.58 4.936291 
11 F OC2H5 O NC2H5 3.25 5.488117 
12 CF3 OC2H5 O NC2H5 2.94 5.531653 
13 H OC2H5 NH NC2H5 6.77 5.169411 
14 OCH3 OC2H5 NH NC2H5 25.43 4.594654 
15 F OC2H5 NH NC2H5 13.03 4.885056 
16 CF3 OC2H5 NH NC2H5 1.47 5.832683 
17 H NHNH2 O O 2.4 5.619789 
18 OCH3 NHNH2 O O 55.37 4.256725 
19 F NHNH2 O O 28.44 4.54607 
20 CF3 NHNH2 O O 36.38 4.439137 
21 H NHNH2 NH O 44.86 4.348141 
22 OCH3 NHNH2 NH O 27.75 4.556737 
23 F NHNH2 NH O 23.56 4.627825 
24 CF3 NHNH2 NH O 25.59 4.59193 
25 H NHNH2 O NC2H5 13.93 4.856049 
26 OCH3 NHNH2 O NC2H5 11.63 4.93442 
27 F NHNH2 O NC2H5 3.34 5.476254 
28 CF3 NHNH2 O NC2H5 11.51 4.938925 
29 H NHNH2 NH NC2H5 13.49 4.869988 
30 OCH3 NHNH2 NH NC2H5 13.09 4.88306 
31 F NHNH2 NH NC2H5 3.3 5.481486 
32 CF3 NHNH2 NH NC2H5 30.03 4.522445 
33 H OH O O 30.68 4.513145 
34 OCH3 OH O O 57.14 4.24306 
35 F OH O O 14.69 4.832978 
36 CF3 OH O O 13.15 4.881074 
37 H OH NH O 7.69 5.114074 
38 OCH3 OH NH O 28.64 4.543027 
39 F OH NH O 29.46 4.530767 
40 CF3 OH NH O 6.59 5.181115 
41 H OH O NC2H5 27.19 4.565591 
42 OCH3 OH O NC2H5 3.3 5.481486 
43 F OH O NC2H5 6.91 5.160522 
44 CF3 OH O NC2H5 19.75 4.704433 
45 H OH NH NC2H5 11.8 4.928118 
46 OCH3 OH NH NC2H5 3.48 5.458421 
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Table 2: Best designed compounds with QSAR model 4 predicted Mtb Gyrase B inhibitory activity 

 
S.No. R R1 X Y L1i MoRSEN26 RDFM5 RDFE25 pMIC 

5a -NH2 -C6H5 -S -NC2H5 46.3672 -0.076 13.332 19.126 6.113594 
5b -NO2 -C6H5 -S -NC2H5 49.1495 -0.149 12.913 21.996 6.093203 
5f -OCH3 -C6H5 -S -NC2H5 47.1623 -0.066 12.143 22.939 6.281145 
6f -OCH3 -C6H5 -O -NC2H5 46.0847 -0.12 13.474 23.633 6.135638 
7b -NO2 - p-fluoro phenyl -O -NC2H5 46.7933 -0.124 13.889 23.224 6.158598 
8a -NH2 - p-fluoro phenyl -S -NC2H5 49.6656 -0.046 12.777 12.554 6.087333 
8b -NO2 - p-fluoro phenyl -S -NC2H5 48.3485 -0.058 12.894 17.594 6.188158 
8e -OH - p-fluoro phenyl -S -NC2H5 50.0636 -0.03 10.526 21.374 6.405132 
8f -OCH3 - p-fluoro phenyl -S -NC2H5 47.9896 -0.026 9.956 19.023 6.201504 
9b -NO2 - p-hydroxy phenyl -O -NC2H5 49.4618 -0.136 13.144 28.024 6.399976 
9c -CH3 - p-hydroxy phenyl -O -NC2H5 49.9071 -0.026 7.777 25.636 6.453775 
9d -C2H5 - p-hydroxy phenyl -O -NC2H5 47.5355 -0.011 13.044 21.974 6.487671 
9e -OH - p-hydroxy phenyl -O -NC2H5 50.8142 -0.053 11.625 14.621 6.147161 

10a -NH2 - p-hydroxy phenyl -S -NC2H5 48.1916 -0.083 11.752 23.026 6.258226 
10c -CH3 - p-hydroxy phenyl -S -NC2H5 47.9848 -0.113 14.121 29.466 6.508855 
10d -C2H5 - p-hydroxy phenyl -S -NC2H5 46.4965 -0.095 13.937 21.868 6.191195 
10e -OH - p-hydroxy phenyl -S -NC2H5 49.5106 -0.094 14.355 15.054 6.088331 
11a -NH2 - p-methoxy phenyl -O -NC2H5 52.0165 -0.1 13.868 24.528 6.538168 
11b -NO2 - p-methoxy phenyl -O -NC2H5 51.8471 -0.134 12.936 26.694 6.458144 
11c -CH3 - p-methoxy phenyl -O -NC2H5 51.9889 -0.073 14.154 13.52 6.207362 
11d -C2H5 - p-methoxy phenyl -O -NC2H5 49.8103 -0.152 13.156 26.843 6.316513 
11e -OH - p-methoxy phenyl -O -NC2H5 53.1721 -0.109 11.364 20.996 6.309323 
11f -OCH3 - p-methoxy phenyl -O -NC2H5 50.9633 -0.119 14.541 19.004 6.237021 
12a -NH2 - p-methoxy phenyl -S -NC2H5 54.5283 -0.06 11.824 18.976 6.480603 
12b -NO2 - p-methoxy phenyl -S -NC2H5 52.8259 -0.104 10.987 21.555 6.314596 
12c -CH3 - p-methoxy phenyl -S -NC2H5 53.9246 -0.099 11.629 22.676 6.457112 
12d -C2H5 - p-methoxy phenyl -S -NC2H5 51.9382 -0.12 12.321 18.933 6.175922 
12e -OH - p-methoxy phenyl -S -NC2H5 55.2092 -0.128 13.254 26.201 6.633183 
12f -OCH3 - p-methoxy phenyl -S -NC2H5 53.1851 -0.053 10.625 13.506 6.170248 
18a -NH2 -C6H5 -S -NCH3 45.2354 -0.04 12.459 23.262 6.304555 
19c -CH3 - p-fluoro phenyl -O -NCH3 43.0018 -0.004 15.978 11.984 6.036144 
19d -C2H5 - p-fluoro phenyl -O -NCH3 41.2298 -0.058 13.825 20.561 6.009373 
23b -NO2 - p-methoxy phenyl -O -NCH3 47.7775 -0.054 18.399 18.294 6.453151 
24c -CH3 - p-methoxy phenyl -O -NCH3 48.6639 -0.122 11.991 20.423 6.057297 
34c -CH3 -p-hyroxy phenyl -S -S 39.2501 0.035 13.432 15.87 6.026652 

Table 3: Molecular docking results of designed compounds 

Designed 
compounds 

Binding 
energy 
(K Cal / 

mol) 

Binding residue interactions along with distance (Å) 

8e -9.1 His44 (2.03349), Trp47 (2.041813), Asn309 (2.03184), Glu312 (3.52474) and His311 
(3.58504) 

9c -8.2 His44 (2.1455), Trp47 (2.29861), Asn309 (1.9318), Glu312 (2.79548) and His311 
(3.64649) 

9d -8.0 His44 (2.19698), Trp47 (2.30081), Asn309 (1.94101) and His311 (3.61389) 

10c -8.1 His44 (2.01258), Trp47 (2.40607), Asn309 (1.95965), Glu39 (2.34003) and His311 
(3.58864) 

11a -8.2 His44 (1.86867), Trp47 (2.51243), Asn309 (1.95123), Thr189 (3.536) and His311 
(3.75156) 

11b -8.1 Val301 (3.31381), Trp47 (2.56797), Thr303 (2.98798), Thr310 (3.19984) and Asn309 
(2.53557) 

12a -7.8 His44 (2.09709), Trp47 (2.41714), Asn309 (1.91631) and His311 (3.60803) 
12c -7.7 His44 (2.15838), Trp47 (2.31666), Asn309 (1.9318) and His311 (3.59417) 
12e -8.6 His44 (2.03439), Trp47 (2.03571), Asn309 (2.05184), Thr189 (3.328) 
23b -8.0 Trp47 (2.04181), Asn309 (2.0318), Val301 (3.30567) 
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Molecular dynamics simulations 
The potential energy of the protein-ligand complex was analyzed for 30 ns. The potential energy of 
complex stabilization was found to be approximately -1.2304035 × 106 kcal/mol. The temperature of the 
system rapidly reached 300 K and then remained stable over the rest of the simulation time. The average 
temperature of the system was 299.638 K. The pressure fluctuated widely over the 200 ps equilibration 
phase. The average pressure was 10.1745 bar, and the average density was 981.465 kg m−3. Density 
values were very stable over time, indicating that the system was well-equilibrated with respect to 
pressure and density.  
RMSD and Rg values are widely used for the assessment of macromolecules stability and rigidity, 
respectively [29]. An Unconstrained simulation of 30 ns was performed on the docked structure of Mtb 
gyrase B (3ZKD) bound to compound 16 and 8e. Despite the initial structural arrangements of the docked 
complex, the average RMSD of the trajectories for bound protein backbone atoms showed relative 
stability. The stability of the protein–ligand complexes were compared within 30 ns of MD simulations. 
RMSD values of the protein–ligand complexes remained less than 0.4 nm throughout the simulation 
periods. Interestingly, the lead (compound 8e) - DNA Gyrase B complex showed even lower fluctuation 
and higher stability than the reference complex. The highest stability in RMSD value was observed in DNA 
Gyrase B–lead complex which had also obtained the best binding affinity. Figure 4 display stable RMSD 
values of the atoms for the compounds 16 and 8e with DNA Gyrase B (3zkd) respectively. The RMSD 
analysis for 3zkd and compound 16 indicates that they reach equilibration and oscillate around an 
average value after 1ns. The average RMSDs from 1ns to30ns for compounds 16 and 8e bound to 3zkd 
protein were 0.3nm and 0.25nm respectively. These results show the relative stability of compound 8e 
during the simulation while compound 16 had higher RMSD.  
Analysis of the docking results showed that His44, Trp47, Asn309, Glu312, His311, Glu39, Thr189 and 
Val301 residues of DNA Gyrase B could be considered as important residues for catalytic activity. 
Structural fluctuations of the protein residues in the complexes were also evaluated by computing RMSF 
values during MD simulations. It is documented that residues with higher RMSF values in the protein 
sequence are more flexible and probably have an unfolded state in the protein structure. Local protein 
mobility was analysed by measuring the time-averaged RMSF values of selected compounds bound to 
3zkd protein against residue numbers based on 30ns trajectory data. Like ‘DNA Gyrase B–compound 16’ 
complex from the dataset, lead compound 8e based complex displayed a noticeable diminution in the 
RMS fluctuation of these residues in comparison with the other residues during MD simulations. The 
results proposed that upon binding of the compounds to DNA Gyrase B, critical DNA-binding residues of 
DNA gyrase would be occupied by the inhibitory compounds which consequently results blockage in the 
activity of DNA gyrase. The average RMSFs measured for compounds bound to 3zkd were 0.012nm and 
0.005nm, which reveals the relative stability of the complex upon binding (Figure 5). Upon comparing the 
RMSFs for both complexes near the binding site region suggest that the designed compound 8e showed 
better binding pattern and stabilize in favorable conformation for inhibition. 
Moreover, Rg values of the protein–ligand complexes were decreased throughout MD simulations. This 
elucidates that DNA Gyrase B–compound complexes are highly compact under the simulated conditions. 
Rg value, which provides insight into the overall dimension and shape of the protein, is calculated for 
both complexes. The average Rg values were 2.45nm and 2.32nm for 3zkd protein (Figure 6). The results 
of the average Rg values indicate that overall shape of the protein was stable upon binding of the ligand. 
 
CONCLUSION 
Current work aims towards identification and development of novel leads for a series of novel 4-
aminoquinoline derivatives as inhibitors of Mtb DNA gyrase B using QSAR, molecular docking as well as 
dynamic simulation tools. QSAR model developed using WHIM, RDF and MoRSE based descriptors with 
both internal and external validated values established a meaningful relationship between structure and 
bioactivity of 4-aminoquinolines with Mtb Gyrase subunit B inhibitory activity. Positively correlated 
descriptors benefit the model along with leverage analysis. Utilizing molecular descriptors information 
from QSAR studies, a self-explorative study on the dataset was performed to identify the model efficiency 
and accuracy. Further, structure bioactivity screening was performed to identify the role of various 
functional moieties on the core structure, which result a meaningful relationship between dataset 
compounds and DNA Gyrase B inhibitory activity.  
A series of compounds were designed from structure activity relationship information and tested for 
predicted bioactivity using QSAR model by obtaining molecular descriptor values from fore mentioned 
web servers. Best designed compounds having predicted bioactivity values above the dataset bioactivity 
values were considered for docking analysis to rule out hydrogen bond interactions. Docking results 
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analyzed nonbonding interactions in the active site of enzyme favouring hydrogen bond interactions with 
Asp186, Glu188, His44, Trp47, Asn309, Glu312 and His 311. Compound 8e with binding energy of -9.1 K 
Cal/mol have shown better predictions in both QSAR and molecular docking studies compared to 
compound 16 with binding energy of -8.7 K Cal/mol. Thus, the key designed compound 8e was taken over 
to simulation studies along with compound 16, taking as reference. 
The molecular dynamic studies revealed that compounds 8e bound to 3zkd were stable and exhibited 
minimal conformational changes, compared to compound 16 of dataset. Overall, molecular dynamics 
simulation studies of 3zkd with ligand 16, 8e analyzed using RMSD; RMSF and Rg analysis gave better 
information on complex stability. The average RMSDs for compounds 16 and 8e bound to 3zkd protein 
were 0.3nm and 0.25nm respectively. These results show the relative stability of compound 8e during the 
simulation while compound 16 had higher RMSD. The average RMSFs measured for compounds 16 and 
8e bound to 3zkd were 0.012nm and 0.005nm respectively, which reveals the relative stability of the 
complex upon binding. Upon comparing the RMSFs for both complexes near the binding site region 
suggest that the designed compound 8e showed better binding pattern and stabilize in favorable 
conformation for inhibition. The average Rg values for compounds 16 and 8e were 2.45nm and 2.32nm 
for 3zkd protein. The results of the average Rg values indicate that overall shape of the protein was stable 
upon binding of the ligand. Thus the present computational work reports the compound 8e as scaffold for 
the development of analogs to target 3zkd, DNA Gyrase B. The overall research work determines 
compound 8e having a great potential to inhibit DNA gyrase B and thus can be applied for further studies 
which aim to discover novel therapeutic drugs. 
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TB: Tuberculosis; WHO: World health organisation; MDR: Multi drug-Resistant; XDR: Extremely drug-
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