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ABSTRACT 

Gout is a frequent inflammatory arthritis characterized by urate crystal accumulation within joints. Xanthine oxidase 
(XO) is an enzyme that converts hypoxanthine and xanthine to uric acid and, when overproduced, causes gout. As a 
result, blocking XO activity is critical for reducing urate production. Here, we present the result of In silico screening 
using ligand-based computational method to identify most suitable compounds as xanthine XO inhibitor. We used the 
known 11 xanthine inhibitors in our Pharmacophore modelling using pharmagist webserver to uncover the novel 
entities. Through the ZINCPharmer webserver, 1000 most comparable pharmacophoric ligands that are feasible were 
identified. By the application of Datawarrior tool, compounds were further filtered and used for molecular docinkg using 
Autodock vina. Based on binding energy and amino acid interaction top 10 ligands are subsequently evaluated for 
ADMET properties using PKCSM webserver.   The ligand ZINC27683167, ZINC89510657 and ZINC91046011 showed 
more binding energy values (-9.6, -9 and -9Kcal/mol) when compared with binding energies of standard drug allopurinol 
(-6.6kcal/mol.). Filtered ZINC compounds to be more potent than Allopurinol. These findings highlight the discovery of a 
novel class of XO inhibitors that have the potential to be more effective than allopurinol in the treatment of gout. 
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INTRODUCTION 
Gout is the most frequent kind of inflammatory arthritis. Hyperuricaemia, or increased serum uric acid 
(SUA) levels, is a key factor in the development of gout. As SUA levels rise and the physiological 
saturation threshold for uric acid in body fluids is exceeded, monosodium urate crystals form and 
deposit in joints and soft tissues, causing inflammation and degeneration in addition to crystal formation 
[1].Males over the age of 40 are more likely to acquire it than women, making it the most common type 
of inflammatory arthritis in this age group [2,3]. Gout is growing more common and more common for a 
variety of causes. Increasing longevity, rising comorbidity rates, the use of specific prescription 
medicines, and changing dietary and lifestyle patterns have all been linked to an increased risk of 
acquiring gout [4-6]. Furthermore, certain populations, such as transplant patients who use 
cyclosporine, are considered high risk. Furthermore, certain populations, such as transplant patients 
who use cyclosporine, are considered high risk [7,8]. Gout has a substantial economic and social impact 
on society. Patients with acute gouty flares or chronic gout have a reduced health-related quality of life 
due to discomfort, restricted activity, and disability. Productivity and work-related activity are both 
much lower in this cohort. Furthermore, the small number of people with chronic gout who are resistant 
to traditional therapy bear an exceptionally high burden of the illness [9-11]. Side effects associated with 
Anti gout drugs are ulcers, bleeding, stomach pain, Nausea, vomiting, diarrhea, Mood swings, raised 
blood sugar, high blood pressure, fever, rash, hepatitis, and kidney issues. Even a brief course of therapy 
can have negative effects because glucocorticoid toxicity is more prevalent with prolonged and repeated 
treatments [12]. The application of computer-aided drug discovery/design (CADD) techniques at 
various stages of the drug development process helps to reduce total costs. As a result, CADD approaches 
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are becoming increasingly widespread and have played a key part in the discovery of therapeutically 
relevant compounds during the previous few decades. These facts highlight the need to adopt more 
effective treatment strategies for gout treatment[13]. 
Hence the present study aims to identify novel lead moieties to inhibit xanthine oxidase for the treatment 
of gout through the application of computational tools. 
 
MATERIAL AND METHODS 
Pharmacophore modeling: A pharmacophore is a molecular framework that outlines the critical 
elements responsible for a molecule's biological activity [14]. Pharmacophore models are created to 
improve knowledge of ligand-protein interactions. They can be used to find novel compounds that meet 
the pharmacophore requirements and are thus predicted to be active [15].If the target structure is not 
available, pharmacophore models can be constructed using structural information from the active ligands 
that bind to the target. This is referred to as the ligand-based pharmacophore modelling technique [16]. 
Pharmacophore models can be developed utilizing the structural attributes of the target when the target's 
structure is accessible. This method is known as structure-based pharmacophore modelling. 
Pharmacophore modelling has been used at many stages of the drug discovery process using pharmagist 
software. In the drug development process, there are two main techniques to pharmacophore modelling: 
Pharmacophore modelling based on ligands and structure-based pharmacophore modelling. Novel 
ligands are designed utilizing a set of active ligands available in the ligand-based pharmacophore 
modelling approach [17]. If the target structure is not available, this strategy is used. Similarly, when the 
structure of the target protein is known, the structure-based pharmacophore method is used [18]. In the 
ligand-based pharmacophore modelling, first active ligands are identified by using the literature available 
or database search. The data set is split into a training set and test set. The training set ligands' features 
are then analyzed. The alignment of the active ligands reveals the similar properties. The next step is to 
generate pharmacophore models and rank the models that are generated. Finally, the pharmacophore 
model is validated, and the best pharmacophore model is chosen based on the results [19]. 
Molecular docking: Docking is a method in molecular modelling that predicts the preferred orientation 
of one molecule to another when a ligand and a target are coupled together to form a stable complex. 
Using scoring functions, for example, knowledge of the preferred orientation can be used to predict the 
strength of connection or binding affinity between two molecules. Because of its capacity to anticipate the 
binding-conformation of small molecule ligands to the proper target binding site, molecular docking is 
one of the most commonly utilised strategies in structure-based drug design. Characterization of binding 
behavior is vital in both rational drug design and elucidating fundamental biological processes [20].The 
initial condition for docking is the protein structure (xanthine oxidase). Typically, a biophysical approach 
such as x-ray crystallography or NMR spectroscopy was used to determine the structure. A docking tool 
uses this protein structure and a database of possible ligands as inputs. A docking program's success is 
determined by two factors: the search algorithm and the scoring mechanism. Then once a target is ready 
the ligands. Then the ligands are made cluster by using discovery studio. Then the cluster and target are 
uploaded in pyrx and then are autodocked by using this software. Then the obtained result is taken and 
verified. Then the interaction between ligand and the target is found by using pymol. Then the 2D and 3D 
interaction image are taken with the help of discovery studio [21]. 
ADMET:ADMET profiles were analyzed using PKCSM web tool.  All the ligands' Simplified Molecular 
Input Line Entry System (SMILES) formats were obtained from the PubChem database for this analysis. 
Lipinski's rule of 5 was applied to all the ligands' drug-likeness to see if all the properties were within 
the acceptable range. The PubChem database was used to get all the ligands' Simplified Molecular Input 
Line Entry System (SMILES) forms for this investigation. Lipinski's rule of five was used to establish 
whether each ligand's drug-likeness is within the allowed range. The atom-based logarithm of the 
partition coefficient was used to calculate lipophilicity levels (ALogP). The blood-brain barrier (BBB) 
was investigated in terms of drug distribution. For substrate or inhibition, drug metabolism was 
estimated. In addition to these, drug toxicity was examined, with a focus on hepatotoxicity, AMES 
toxicity [22].  
RESULT 
Ten diverse compounds ZINC07988619, ZINC08323999, ZINC27683167, ZINC31314416, 
ZINC38600479, ZINC67246986, ZINC72510810, ZINC87026910, ZINC89510657, ZINC91046011 After 
optimization, the training set with the highest activity and diversity of chemical structure was chosen. 
The Feature Mapping tool in Discovery Studio was used to extract and cluster essential characteristics in 
this protocol. Allopurinol, Oxypurinol, Benzbromarone, Celecoxib, Fenofibrate, losartan, Probencid, 
Colchicine, Febuxostat, Topiroxostat, Lensinurad, are used to inhibit xanthine oxidase. Table 1 displays 
the docking score and binding interaction. Celecoxib was discovered among the inhibitors with a 
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docking score of -9.1 kcal/mol and conventional hydrogen bonding with ARG313, GLN100, GLN415, 
THR416. Pi - alkyl interaction with PHE198, Alkyl interaction with ALA151, Interaction of halogen with 
GLN372. These ligands attach to the protein by hydrogen bonding, Alkyl interactions, Halogen 
interactions, and Pi-alkyl interactions. The residue tacking part in interaction were ARG313, GLN100, 
GLN415, THR416, ALA151, PHE198, GLN374, PHE372. As a result, the foregoing interaction could be 
crucial and explain why molecules act as Xanthine oxidase inhibitors. The compound was docked after 
extracting the molecule from the ZINC database using ZINC Pharma based on the pharmacophore. In this 
case, ten chemicals were chosen for molecular docking with the target protein PDB ID: 7MSD. The 
docking was examined to obtain compounds with the highest docking score (most negative) to compare 
with the binding interactions of compounds. This comparison aids in identifying the hit molecule as a 
Xanthine oxidase inhibitor. The chemicals are identified based on their binding interaction. A docking 
score of between -8.2 and -9.6 kcal/mol is possible. A molecule named ZINC27683167 was discovered 
through molecular docking to have the best docking score of -9.6 kcal/mol and to interact with TRP103 
in the Pi-Pi stacking and Pi-Pi T shapes. pi-alkyl interaction with PRO200, as well as alkyl interaction 
with PRO200. Hence, these 10 compounds can block xanthine oxidase. 
 

Table 1: Standard and test compounds binding affinity 
Ligands Binding affinity ZINC ID Binding affinity 
Febuxostat -8.4 ZINC07988619 -8.2 
Oxypurinol -6.8 ZINC08323999 -8.3 
Allopurinol -6.6 ZINC27683167 -9.6 
Benzbromarone -8.3 ZINC31314416 -8.5 
Celecoxib -9.1 ZINC38600479 -8.8 
Fenofibrate -7.7 ZINC67246986 -8.2 
Losartan -8.9 ZINC72510810 -8.7 
Probencid -7.1 ZINC87026910 -8.3 
Topiroxostat -8.6 ZINC89510657 -9 
Lensinurad -8.5 ZINC91046011 -9 
Colchicine -8.8 

 

Fig 1: 2D view of molecular interaction of amino acid residues of xanthine oxidase with celecoxib 

 
Fig 2: 2D(left) and 3D(right) view of molecular interaction of amino acid residues of xanthine 

oxidase with ZINC27683167. 
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Fig3: 2D(left) and 3D(right) view of molecular interaction of amino acid residues of xanthine 

oxidase with ZINC91046011 

 
Fig 4: 2D(left) and 3D(right) view of molecular interaction of amino acid residues of xanthine 

oxidase with ZINC89510657 
 

Fig 05: 2D(left) and 3D(right) view of molecular interaction of amino acid residues of xanthine 
oxidase with ZINC38600479 
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Fig 6: 2D(left) and 3D(right) view of molecular interaction of amino acid residues of xanthine 

oxidase with ZINC72510810 
 
A molecule’s fate inside the body is largely determined by the ADMET characteristics. When a molecule is 
administered orally, a good absorption is sought. The distribution and absorption of a molecule 
throughout the system will be governed by the balance of lipophilic and hydrophilic groups in the 
structure. From a therapeutic standpoint, effectiveness and toxicity are important. The liver contains a 
variety of cytochrome enzymes that are responsible for the molecule’s metabolism. As a result, after 
metabolization, the activity of the metabolite should be known and removed from the body when the 
intended therapeutic impact has been achieved using the PKCSM software to determine whether a 
molecule cluster has likeliness and to forecast the ADMET attribute. Lipinski rule of 5 for ZINC 
compounds as shown in the table 2 

Table 2: Lipinski rule of 5 for ZINC compounds 
Zinc Compounds PHYSICAL PROPERTY 

MOL_WEIGHT LOGP #ROTATABLE_BONDS #ACCEPTORS #DONORS 
ZINC27683167 359.426 2.9439 8 5 2 
ZINC38600479 359.426 2.9439 8 5 2 
ZINC31314416 356.422 3.3364 6 4 2 
ZINC91046011 345.467 0.82772 9 4 2 
ZINC72510810 338.367 1.2762 6 4 2 
ZINC07988619 333.432 2.2478 6 3 2 
ZINC08323999 333.413 1.4986 3 4 2 
ZINC89510657 326.352 2.3019 5 4 2 
ZINC67246986 316.361 1.1222 7 5 2 

 
CONCLUSION 
Some possible structures were examined as XO inhibitors using a pharmacophore modelling and 
molecular docking combination. discovery of a new class of XO inhibitors that may be more effective at 
treating gout. Additionally, ZINC27683167 can be tested in vitro and in vivo to find a powerful lead for 
the treatment of gout. 
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