Bulletin of Environment, Pharmacology and Life Sciences Bull. Env. Pharmacol. Life Sci., Vol 12 [10] September 2023 : 312-317 ©2023 Academy for Environment and Life Sciences, India Online ISSN 2277-1808 Journal's URL:http://www.bepls.com CODEN: BEPLAD ORIGINAL ARTICLE

Environmental Management of Industrial Hazardous Wastes in North-East India

Arnab Mandal, M.K. Choudhury, Rakesh Basumatary, Ananda K. Ngangom, Manimita Das Central Pollution Control Board, Regional Directorate Shillong, Lower Motinagar, Shillong -793014, India Corresponding Author: Arnab Mandal; mandalarnab.cpcb@gov.in

ABSTRACT

The Red Category of industries known for its generation of hazardous wastes. Environmental hazards resulting from rapid industrialization mandates developing nations like India to focus on comprehensive hazardous waste management within the country. As per the Annual Report:2020-21 of Central Pollution Control Board, there are 45 common Treatment Storage & Disposal Facilities (TSDF) across 18 states/UTs in India. Among the common facilities (TSDF), 17 units are with integrated facilities having both secured landfills & incinerators. Despite, the establishment of stringent regulations & environmental standards and developing infrastructure within the country, the safe disposal of hazardous waste remains a significant concern in the North-Eastern States of India due to non-availability of TSDF sites within the region. However, hazardous waste management plan is required for effective management of waste at individual industry level in the region. This study was initiated to assess the chemical profile of hazardous waste generated by large chemical industries in north eastern (NE) states; and to improve the current waste management system. Among all industries in NE Region, Refinery contributes more in terms of hazardous chemical waste generation per unit of the product. During FY 2021-22, it was found that Refinery Industries in NE Region re-processed or recycled approx. 41% of the total hazardous waste and the rest 57 % of total waste stored within the units. This trend is more or less similar with all other industries of NE. Sludge samples from pollution control processes were collected from various representative industries for the determination of calorific value of the dried sludge/waste to figure out the suitability of the sludge/waste for co-processing to nearby cement plants in the states of Meghalaya/Assam. Based on the Gross Calorific Value (GCV) (Kcal/Kg) analysis of the Chemical Sludges, it is recommended that Chemical Sludges from ETPs of Petrochemical, Fertilizer & Refinery (GCV 3700-5200 kcal/kg) may be used in mixture with coal as a source of alternative fuel in cement industries (Co-processing). This study helped us in identifying the major Hazardous Chemical Waste Generator industries in NE and help the regulators and policy makers in focusing a better environmental management plan in handling & alternate disposal of the chemical waste within NE India.

Keywords: Chemical Sludge, Co-processing, Disposal, Gross Calorific Value, Hazardous Waste Management, North-East India, Refinery, TSDF

Received 29.07.2023

Revised 21.08.2023

Accepted 26.09.2023

INTRODUCTION

The last decade has witnessed environmental hazards and catastrophes as a result of the fast industrialization of the world. More stringent regulations and the enforcement of environmental standards were established as a result of pressures brought by the crisis in developed nations, Unfortunately, this approach has not yet become mainstream in the majority of developing nations [6] Industrial wastes have been a concern as a result of industrial operations; however comprehensive management should be taken into consideration in order to reduce their hazards. Indian industries have experienced a rapid growth in the past decade, which has led to an increase in the production of hazardous waste. Wastes that are produced locally and those that are imported from other nations for recycling or reprocessing need to be treated and disposed of scientifically. There are, however, very few secure landfill locations in the nation that can properly dispose of hazardous waste. The illegal disposal of hazardous waste by the industries may result in significant degradation of the environment. In India, the safe disposal of these hazardous wastes has emerged as a significant environmental concern. Hazardous waste was first regulated in 1989 through Hazardous Waste (Management & Handling) Rules, 1989, which subsequently were amended in 2008 to incorporate Basel Convention provisions and lastly recently again in 2016 as Hazardous and other Wastes (Management & Transboundary Movement) Rules, 2016 (sixth amendment 21.07.2022) to cope with potential hazardous waste-related environmental issues in the foreseeable future within the country.

However, regulatory bodies and enterprises should properly understand various concerns connected to hazardous waste management in different regions of the country in order to assist the government in building an environment friendly management system. As per the Annual Report 2020-21 prepared by Central Pollution Control Board, quantity of Hazardous waste generated during the financial year 2019-20 within India was 7.68 million tonnes. Approximately 50% of the hazardous waste was recycled/utilized (co-processing, captive & non-captive utilization), about 15% of the waste was stored at the premises and rest was disposed via Secured Land Fill & Incineration facilities during that year [2]. There are 45 common Treatment Storage & Disposal Facilities (TSDF) across 18 states/UTs in India. Among the common facilities (TSDF), 17 units are with integrated facilities having both secured landfills & incinerators. However, no such common facility (TSDF) exists within the North-Eastern (NE) Region of India. Hence, a proper environmental management plan for handling, treatment & disposal of industrial hazardous waste within this remote area is required for effective Hazardous Waste Management (HWM). But, No data is readily available regarding the chemical profile of the industries and the characteristics of generate Hazardous wastes by such industries. Thus, this study investigates the characterization of chemical hazardous waste generated by large chemical industries in North Eastern States especially in the States of Assam, Meghalava and Tripura. Moreover, this paper also tried to portray on the current management system of the generated industrial waste in North-East India before providing recommendations to the concerned authorities for regulation purpose, which will help policy planners & decision makers of the country for effective hazardous waste management.

MATERIAL AND METHODS

Preliminary data have been collected based on a survey from the representative chemical industries of North East (NE) India. Three (3) Units of Oil Refinery (Assam), One (1) Unit of Petrochemical Industry (Assam), One (1) unit of Oil & Gas Upstream (Drilling), One (1) unit of Fertilizer Industry (Assam), Two (2) units of Distillery (Assam & Meghalaya) & One (1) industrial growth center of Rubber processing industries (Tripura) operating in the states of North-East India have been chosen for this study. The survey form is divided into four sections: first section contains basic information like the name, address, type of industry, nature and quantity of industrial products. Second Section intends to capture the data about Raw material Consumption in the industry, Penultimate section focuses on the Chemical Profiles, quantity & nature of the chemical waste of the industry. The final section includes data on source separation, storage status, frequency of waste discharge, organization responsible for transport and disposal, and techniques for the final disposal of industrial solid hazardous waste (Chemical Waste Management). Sludge samples from pollution control processes (ETP) from Refinery, Petrochemicals, Oil& Gas Upstream (Drilling), Fertilizer & CETP of Rubber Processing Industry were collected for determination of Gross Calorific Value (GCV) of the waste. Following parameters like total Organic Carbon (wt.%), & various metals (Ca, Cd,Cr,Cu, Mg,Mn, Ni, Pb, Zn, Fe &Co) were also analyzed for the oily sludges collected from refinery & petrochemicals industry. The management of the chemical waste by the industries was recommended based on the characteristics of the chemical wastes.

RESULTS AND DISCUSSION

Comparison, Inventorization & Categorization of Hazardous Chemical Waste from Chemical Industries of NE

Data have been collected for Hazardous Chemical Waste Inventories, Generation & Disposal for the representative Industries during FY 2021-22. A ratio (R) has been defined in this purpose to compare the hazardous waste generated per unit of product across different representative industries.

R = Quantity (MT) of Product /Total Quantity Hazardous Waste (Generated) (MT)

Physical significance of this defined ratio R is quite evident. It represents a quantitative figure on how much Quantity of Waste is generated per unit of the Product. More the value of R of a particular industry, i.e., better it is in terms of less generation of Hazardous Chemical Waste. Table 1 gives an idea about a comparison of hazardous waste generation per unit of the product across different industries in NE India. **Table 1: Comparison of Production quantity per unit of hazardous waste generation across**

mparison of Production	quantity per unit	of hazardous	s waste generat	tion across
Indu	stries of North-Ea	st India		

Industry Type	Avg. R Value
Refinery (MT/MT)	52.19
Fertilizer (MT/MT)	8,094.05
Petrochemicals (MT/MT)	205.08
Rubber Processing Industry (MT/MT)	3,222.62

It is evident from the above table that among all industries, Refinery Industries contributes more in terms of hazardous chemical waste generation per unit of the product. However, sources and chemical composition of Hazardous Chemical Waste varies for different industries. Various category wastes in a particular industry can be seen from Table 2.

Chemical Industry	Category of Hazardous Waste as per	Type of Chemical Waste
	Schedule- I, II, III of HWM Rules	
	Schedule-1 & Category 4.1	Chemical & Oily Sludge (ETP)
	Schedule-1 & Category 4.4	Bio-Sludge (ETP)
Refinery	Schedule-1 & Category 4.1	Tank Bottom Sludge
	Schedule-1 & Category 4.2	Spent Catalyst
	Schedule-1 & Category 4.3	Slop Oil
	Schedule-1 & Category 5.1	Spent Lube Oil
Petrochemicals	Schedule-1 & Category 1.6	Spent Catalyst & Molecular Sieves
	Schedule-1 & Category 1.3	Oily Sludge
	Schedule-1 & Category 1.1	Coke, reactor residue & debris
	Schedule-1 & Category 5.1	Waste oil & Used Oil
Fertilizer Schedule-1 & Category 18.1		Spent Catalyst
	Schedule-1 & Category 5.1	Used Oil & Waste Oil
	Schedule-1 & Category 2.1	Drill Cutting excluding those fromwater-based
Crude Oil Production		mud
	Schedule-1 & Category 2.2	Sludge containing oil
	Schedule-1 & Category 2.3	Drilling Mud
Distillery		Distillery Spent Wash
		Sludge of Waste Water Treatment
		Plants
	Schedule-1 & Category 5.1	Waste oil & Used Oil
Rubber Processing		Chemical Sludge from wastewater treatment
Industry & CETP		Low-grade rubber sludge from
		Primary Treatment Tank
	Schedule-1 & Category 5.1	Spent Lube oil

Table 2: Chemical Waste categorization from different industries of NE India

Sector Specific Hazardous Waste Management

Information about Hazardous Waste source separation, storage status, waste discharge frequency, transport and disposal of waste, and techniques adopted for final disposal of solid hazardous waste were collected from each representative chemical industry. Following Table 3 summarizes Waste Management across various industries of NE India.

Chemical Industry	Type of Chemical Waste	Method of Disposal		
	Chemical & Oily Sludge (ETP)	Captive Secured Land Fill		
	Bio-Sludge (ETP)	Captive Secured Land Fill		
	Tank Bottom Sludge	Bioremediation facility		
Refinery	Spent Catalyst	E-Auctioning to Authorized Recycler		
	Slop Oil	Reprocessing in CDU/VDU & Sold to recyclers		
Refinery	Spent Lube Oil	Stored in Designated Area		
	Spent Catalyst & Molecular Sieves	Co-processing/E-Auctioning to Authorized Recycler		
	Oily Sludge	Bioremediation facility		
	Coke, reactor residue & debris	Co-processing in Cement Plants		
Petrochemicals	Waste oil & Used Oil	Sold to recyclers		
	Spent Catalyst	Sold to recyclers		
	Silica	Entire waste is reused as filler in		
		Single Super Phosphate production		
Zinc Mud		Entire waste is reused as filler in Single Super		
Fertilizer		Phosphate production		
	Used Oil & Waste Oil	Sold to recyclers		
Sludge of Waste Water Treatment Plants		Used as a Fertilizer		
Distillery	Waste oil & Used Oil	Sold to recyclers		
	Chemical Sludge from waste water			
	treatment	TSDF Sites		
Rubber Processing	Low-grade rubber sludge from Primary			
Industry & CETP	Treatment Tank	Resold to recyclers		
	Spent Lube oil	Sold to recyclers		

It is quite evident that majority of the chemical industries dispose liquid hazardous waste i.e., Slop oil, waste oil & used oil through authorized recyclers. In refinery & petrochemical industries some of oily & chemical

sludge may be treated in bioremediation facility. After bio-remediation treatment, the same is being used in horticulture and land filling. In absence of any treatment facility, a major shared of produced hazardous waste is stored at the premises of the facility. During FY 2021-22, it was found that Refinery Industries in NE India re-processed or recycled approx. 41% of the total hazardous waste in that FY and the rest 57 % of total waste remains with the unit. This trend is more or less similar with all the industries of NE. Some chemical industries of NE dispatch high calorific value solid hazardous waste to nearby cement industries for co processing. The transportation of the waste is majorly done through Pollution Control Board authorized agencies. However, proper characterization, calorific value determination & monitoring of generated chemical hazardous waste from the process of chemical industries are necessary for planning effective Source Separation, Storage, treatment & disposal of the wastes.

Characterization of Chemical Wastes

Sludge samples from pollution control processes & other chemical wastes were collected from various representative industries for the determination of calorific value of the dried sludge/waste and figure out the suitability of the sludge/waste for co-processing to nearby cement plants. Table 4 depicts calorific values of different dried chemical wastes/sludges collected from the industries. Chemical Sludges from ETPs of Petrochemical, Fertilizer & Refinery has sufficient GCV (Kcal/Kg) that can be sent for co-processing in cement industries.

Chemical characterization of ETP sludge (Chemical &oily) collected from Refinery & Petrochemical Industries has also performed to analyze the metal content (wt.%) in the waste. Chemical Characterization of the different chemical wastes collected from the refinery & petrochemical industries can be observed from the table 5 (A) & 5(B). Iron is found to be higher among heavy metals in both oily sludge samples of refinery & petrochemical units. Considering the heavy metal contents, these sludges should be handled & disposed off carefully to avoid any contamination in the surrounding environment.

able 4: GCV of chemical studges if one unterent chemical mudstries in N						
Inductory Type	Source	of	Chemical	Gross	Calorific	Value
industry Type	Waste			(Kcal/H	Kg)	
Petrochemical	ETP Sludge		4307.57			
Oil & Gas Upstream (Drilling)	ETP Slud	ge		2011.6	0	
Refinery	ETP Slud	ge		5243.6	0	
Fertilizer	ETP Slud	ge		4108.5	1	
Rubber Processing	ETP Slud	ge		3765.0	0	

Table 4: GCV of Chemical Slu	udges from different o	chemical industries in NE

Table 5 (A, B): Chemical Characterization of the different chemical wastes from different chemical industries in North-East India Table 5 (A)

Sample Source of Chemical Waste	Parameters	Compositions (wt.%)		
	Moisture Content	84.620		
	Oil Content	3.700		
	Organic & Volatile Matter	9.200		
	Iron	0.480		
	Sodium	0.120		
	Sulphide	0.120		
	Phenol	0.003		
	SiO ₂ & Trace Metals	0.045		
ETP Chemical & Oily Sludge	Chloride	0.960		
(Refinery)	Calcium	0.220		
	Magnesium	0.100		
	Manganese	0.008		
	Nickel	0.000		
	Sulphate	0.420		
	Zinc	0.001		
	Lead	0.000		
	Copper	0.001		
	Cobalt	0.001		

		14010 0 (2)	
Sample Source Chemical Waste	e of	Parameters	Compositions (wt.%)
		Alumina (Al ₂ O ₃)	15.030
		Sulphide	0.860
		Calcium Oxide	0.740
		Magnesium Oxide	0.145
		Chloride	0.135
Oily Sludg		Oil & Grease	11.450
	Sludge	Organic & Volatile Matter	42.280
(Petrochemicals)	-	Silica (as SiO2)	22.600
		Iron	3.170
		Nickel	0.006
		Zinc	0.032
		Manganese	0.001
		Sulphate	0.420
		Copper	0.006
		Chromium	0.001

Table		(D)
rable	J	D

RECOMMENDATIONS & CONCLUSION

After conducting an in-depth study of chemical profile of wastes in various industrial sector of NE India, following points have been recommended for efficient management of the Hazardous Chemical waste in North East India:

- The Ministry of Environment, Forest & Climate Change- Government of India has notified a number of solutions for the treatment and disposal of diverse hazardous waste streams, including recycling, land-filling, biological treatment, incineration, and physical and chemical treatment.
- **Secured landfills** should be used for disposal of non-biodegradable and non-treatable hazardous waste. **Bio-remediation techniques** may also be adopted for biologically degradable waste to avoid land-filling.
- Based on the GCV (Kcal/Kg) analysis of the Chemical Sludges, it is recommended that Chemical Sludges from ETPs of Petrochemical, Fertilizer & Refinery may be used in mixture with coal as a source of alternative fuel in cement industries (Co-processing). Oil- Drill Mud may also be used in Brick-Kiln industry due to having less calorific value (~2000 Kcal/Kg). This practice will also boost the policy of circular economy in the country.
- Facility in NE region may be established to collect & recover the **precious metals from Spent catalysts** & other chemical wastes through authorized dealers.
- A **common facility (TSDF) for treatment & disposal** of hazardous waste may be established in North-Eastern region for effective HWM.
- Waste collection, treatment, and disposal programmes provide a great opportunity for entrepreneurs to profit from this sector of development, comparable to other sectors of development where private entities are actively participating. Not only will this help a facility provider maintain a profitable business, but these development efforts will also benefit society as a whole by creating jobs and a cleaner environment.

The development of alternative technology to completely stop the production of hazardous wastes is challenging. In developing nations, the emphasis on economic development frequently places a higher value on production costs than the finest possible technology, which increases the output of trash. Such wastes incur expenses for treatment and disposal, which burdens society. Many studies [3,7] outline selection criteria for such sites that consider hydro- geological aspects, land use/cover, ecological values, and human values. Prior to choosing a landfill, the other choices, such as resource recovery through reuse and recycling of such wastes, should be given equal weight. Environmental Impact Assessment (EIA) is used all over the world to choose a location for a secure landfill to ensure that such a facility has a minimal negative impact on social and natural systems [4]. Despite the country's availability of the aforementioned technological expertise, the creation of such facilities has not progressed at the necessary rate. Secured

landfill and incinerator projects have a lot of potential to develop into a formal industry under the nation's environmental management Programme. A regional hazardous waste facility will be more cost-effective, profitable, and able to meet regional needs, reducing the breadth of the scattered effects of several smallerscale plants. This study regarding chemical waste from various industrial sectors in NE India would help us in identifying the major Hazardous Chemical Waste Generator industries in NE and help us in focusing a better environmental management plan in handling & alternate disposal of the chemical waste in NE India.

ACKNOWLEDGEMENTS

The authors would like to express their gratitude to the Ministry of Environment, Forests, and Climate Change (MoEF&CC), Government of India, for sponsoring the R&D project under the Control of Pollution Scheme during the financial year 2021-22. The authors gratefully acknowledge Dr. Prashant Gargava, Member Secretary, CPCB for intellectual inputs provided during the study. The authors are also grateful to the CPCB for the permission to publish this paper.

CONFLICTS OF INTERESTS

The authors declare no conflicts of Interest.

REFERENCES

- 1. Ahuja, A.S., Abda, S.A. 2015.Industrial hazardous waste management by government of Gujarat. Res. Hub Int. Multidiscip. Res. J. 2: 1–11
- 2. Annual Report 2020-21. Central Pollution Control Board, Delhi. Ministry of Environment, Forest & Climate Change. Government of India
- 3. Babu, B.V., Ramakrishna, V. 2003. Extended Studies on Mathematical Modeling of Site Sensitivity Indices in the Site Selection Criteria for Hazardous Waste Treatment, Storage and Disposal Facility. Journal of the Institution of Public Health Engineers India. Vol. (2): pp 11-17
- 4. Dutta, S.K., Upadhyay, V.P., Sridharan, U. 2006.Environment Management of Industrial Hazardous Wastes in India. Journal of Environ. Science & Engg. 48(2):143-150
- 5. el-Fadel, M., Zeinati, M., el-Jisr, K., Jamali, D. 2001.Industrial-waste management developing countries: The case of Lebanon. J Environ Manage .61:281-300.
- 6. Karami, M.A., Sadani, M., Farzadkia, M., Mirzaei, N., Asadi, A. 2015. System analysis of industrial waste management: A case study of industrial plants located between Tehran and Karaj. Int J Env Health Eng.4:13.
- 7. Karthikeyan, L., Suresh, V.M., Krishnan, V., Tudor, T., Varshini, V. 2018. The Management of Hazardous Solid Waste in India: An Overview. Environments. 5:03. https://doi.org/10.3390/environments5090103
- 8. Kumar, S.; Smith, S.R.; Fowler, G.; Velis, C.; Kumar, S.J.; Arya, S.; Rena; Kumar, R.; Cheeseman, C. 2017. Challenges and opportunities associated with waste management in India. R. Soc. Open Sci.
- 9. Olukanni, D.O., Oresanya, O.O. 2018. Progression in Waste Management Processes in Lagos State, Nigeria. Int. J. Eng. Res. Afr. 35:11–23
- 10. Pyssa, J. 2019. Recovery and treatment of hazardous waste. Modern management of hazardous waste in Poland IOP Conf. Ser.: Earth Environ. Sci.

CITATION OF THIS ARTICLE

Arnab Mandal, M.K. Choudhury, Rakesh Basumatary, Ananda K. Ngangom, Manimita Das. Environmental Management of Industrial Hazardous Wastes in North-East India. Bull. Env.Pharmacol. Life Sci., Vol 12 [10] September 2023: 312-317