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ABSTRACT 
The aquatic systems are significantly introduced with toxic pollutants due to various industrial performances. The removal 
of heavy metals using several conventional methods is replaced with modern tools employing biological material such as 
bacteria, fungi as potential biosorbent. This comprehensive review was attempted to compile the scattered information on 
the ability of fungus in the selective sequestration of metal toxicants. Cellular properties and mode of action displayed by 
the active functional groups of fungal sorbents and the factors that contribute for bio sorption by dead and live fungal 
biomasses are elaborately discussed. The concerns correlated to fungal bio sorption are examined and a possible solution 
required to achieve a sustainable environment are evaluated. Though, few literatures on the metal removal efficiency of 
fungal biosorbents are reported, very little attention has been revealed regarding their industrial utilization and the 
mechanism of metal sequestration. This review creates an overall insight regarding the present state of fungal applications 
as a biosorbent and the challenges and solution they offer in treating polluted environment. 
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INTRODUCTION 
Rapid rise in industrialization and urbanization had egressed as a significant threat to aquatic environment 
due to the direct discharge of massive pollutants as waste into the ecosystem [1, 2]. The most diverse 
pollutants in industrial effluents include inorganic heavy metals and organic dyes, which are extremely 
tenacious and can have a prolonged negative impact on aquatic organisms. Industrial effluents often 
contain several potential hazards that could not be refined through current purification methods [3]. The 
primary pollutants emitted by industrial sites contains toxic metals such as Cu, Cr, Cd, Hg, Ni, Pb, Zn, etc. 
[4]. Exhausted metals accumulate in living tissues via the food chain and induce toxicity to all the life forms 
causing adverse impact on public health [5, 6, 7 and 8]. Heavy metal recovery using conventional methods 
is neither cheap nor ecologically sound, as incidence of toxicological consequences were recorded due to 
excessive chemical utilization [9]. Therefore, government regulatory laws are heavily relying on industrial 
sectors to implement novel and advanced water treatment techniques [3, 10]. Current quest for a novel, 
innovative, adaptable and renewable technique for metal remediation has attracted focus on effluent 
purification [11, 12]. The level of concentration of toxic metals in the effluent must be scaled down to the 
permissible limits before it causes irreplaceable collapse to the ecosystem [13, 14]. 
In this endeavor, biosorption has emerged as an attractive technology and a prominent substitute to 
current wastewater treatment methods due to its low capital investment, effectiveness in treatment, 
minimal generation of secondary waste, slow processing period, and minor toxicity concerns [15, 16]. 
Biosorption is a metabolism-independent process in the type of mechanism involving a physiochemical 
interaction that mainly occur in the cell wall [17]. The biosorption process consists of a liquid phase 
(usually water) containing dissolved compounds or sorbate (metal ions) and a solid phase (bio-sorbent) 
with active sites on its surface. Due to the strong affinity of sorbent for sorbate species, the latter is drawn 
and bonded onto its surface through a distinct process. The method is continued until the amount of solid-
bound sorbate and sorbate left in the solution achieve equilibrium. 
Microorganisms such as bacteria, fungi, algae, and some plant and animal waste biomasses have the ability 
to remove heavy metal ions and promote their transformation to lesser toxic forms [18].  Microorganisms 
are recognized as a large spectrum of species that possess desirable characteristics to act as an ideal 
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sorbent for most metal pollutants. Physioche mical reaction between active sites of the microorganism and 
metal ions distributed in polluted water occurs through complexation, chelation, ion exchange, [19]. 
Several Bacterial species, such as Chryseobacterium sp., Comamonas sp., Delftia sp., Enterobacter sp., 
Ochrobactrum sp., Providencia sp., and Stenotrophomonas sp., have showed remarkable ability to adsorb 
heavy metals from the culture medium [20, 21, 22]. Enterobacter cloacae KJ-46, E. cloacae KJ-47, 
Viridibacillus arenosi B-21, and Sporosarcina soli B-22 have been reported to be effective for Cu, Cd, and Pb 
degradation [23]. Aspergillus sp. are capable of removing Cr and Ni from effluent discharge through 
biosorption [24]. A yeast strain ES10.4 isolated from activated sludge was employed for reduction of metals 
such as Cu, Hg, Cd, and Pb [25]. However, compared to fungus, application of bacteria in biosorption is 
reported to be limited due to their poor resistance to metal [26]. The use of fungal biomass in wastewater 
treatment to remove organic and inorganic pollutants has shown to be an excellent alternative due to the 
higher secretion of intracellular and extracellular metal chelators and anti-oxidative defense system [27, 
28]. Based on this foundation, the purpose of this review is to document the metal chelating properties of 
fungi from toxicologically polluted aqueous environments. Review also discusses the potential advantages, 
limitations, scope, and scientific value of fungal biosorption. 
 
FUNGI AS A BIO-SORBENT 
Fungi are the most diverse kingdom, containing species that comprise both unicellular and multicellular 
beings of ecological significance [29].  Multicellular fungi possess growth forms that are distinct from those 
of plants and animals [17, 30]. Fungal cell walls are rich in functional groups and bioactive compounds that 
contribute in biosorption [31, 32]. Metal-binding capabilities, and intracellular accumulation are reported 
to be higher in fungus due to the involvement of metal transport proteins in the metal tolerance either by 
extruding toxic metal ions from the cytosol out of the cell or by allowing metal sequestration into vacuolar 
compartment [33, 34, 35]. Candida palmioleophila KB-6 isolated from tea soil was shown to be less tolerant 
to Cd, Hg, Ag, Ni and many other metals (excluding Pb) compared to Cryptococcus sp. AH-13 [36]. The 
resistance profile of Candida parapsilosis to heavy metals such as Cr, Cu, Hg, Ni, Pb and Zn has been 
documented [26]. Furthermore, few Saccharomyces sp. isolated from three different fruits were found to 
exhibit resistance to metals such as Cd, Cu, Mn, Zn, and Ag [37]. Both heavy metal susceptibility and removal 
by Rhodotorula mucilaginosas was exhibited for Hg, Cu, Pb [38]. The potentiality of fungi to 
synthesize exoenzymes for complex carbohydrate assimilation without prior hydrolysis makes them 
capable of removing contaminants like heavy metals from aqueous solutions in significant amounts [39, 
40]. 

Table 1: Biosorption capacities and removal efficiency of various fungal species in waste water 
treatment 

Sl. 
No. Fungal species Metal 

pollutants Pretreatments Biosorption 
capacity (mg/g) 

Removal 
efficiency (%) 

Refere
nces 

1.  Aspergillus 
fumigatus Th Biomass 370 - [200] 

2.  Aspergillus 
fumigatus RH05 Zn Non-growing live biomass 

Oven dried biomass - 
59.72 

 
59.81 

[123] 

3.  Aspergillus flavus 
NA9 Zn - 287.8 - [201] 

4.  Aspergillus flavus 
RH07 Zn Non-growing live biomass 

Oven dried biomass - 40.89 
82.38 [123] 

5.  Aspergillus flavus 
strain KRP1 Hg - - 97-98.5 [202] 

6.  Aspergillus 
japonicus 

Fe 
Cr 
 Ni 
 Hg 

Biomass 

1.34 
1.18 
1.89 
1.23 

- [203] 

7.  Aspergillus lentulus 

Cr 
Cu 
Pb 
Ni 

Live - 

79 
78 

100 
42 

[204] 

8.  Aspergillus niger Cu 
Mycelium pellets 

Aerial mycelia 
Spores 

8.1 
20.02 
27.3 

- [205] 

9.  Aspergillus niger 
405 

Cu 
Ni - 4.4 

2 - [206] 

10.  Botrytis cinerea Cu 
Cd - 9.23 

17.03 - [207] 
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11.  Funalia trogii 

Hg 
Cd 
Zn 

 
Hg 
Cd 
Zn 

Heat inactivated 
immobilized 

 
Immobilized live 

402.2 
191.6 
54.0 

 
333.0 
164.8 
42.1 

- [208] 

12.  Klebsiella sp. 3S1 Pb Biomass 140.19 - [209] 

13.  Lentinus edodes 

Hg 
Cd 
Zn 
Hg 
Cd 
Zn 

Live 
 
 
 

Inactive pellets 

336.3 
78.6 
33.7 

403.0 
274.3 
57.7 

- [210] 

14.  Lentinus sajor-caju U 
Alkali treated 

Untreated 
Heat treated 

378 
268 
342 

- [211] 

15.  Mucor hiemalis Hg - - 99 [212] 

16.  Mucoromycote sp Cd - 79.67 - [213] 

17.  Paecilomyces 
lilacinus XLA Cd - 77.61 - [213] 

18.  Paecilomyces 
variotii Hg - 26.0 86 [214] 

19.  Penicillium 
canescens 

Cd 
Pb 
Hg 
As 

- 

102.7 
213.2 
54.8 
26.4 

- [107] 

20.  Penicillium 
chrysogenum 

Cd 
Zn 
Cu 
Pb 

Biomass 

21.5 
13 

11.7 
96 

- [215] 

21.  Pencillium 
chrysogenum 

U 
Sr 
Cs 

Mycelial pellets - 
62 
39 
50 

[216] 

22.  Penicillium sp. 
Sr 
U 

Th 

Bio-nanocomposites of 
fungus-Fe3O4 

100.9 
223.9 
280.8 

- [217] 

23.  Phanerochaete 
chrysosporium 

Cd 
Pb - 15.2 

12.34 - [218] 

24.  Phanerochaete 
chrysosporium Cu Live and dead biomass - 40-60 [219] 

25.  Phanerochaete 
chrysosporium Pb Resting cells 80 - [220] 

26.  Phanerochaete 
chrysosporium Zn Treated with elemental 

selenium particles - 88.1 [221] 

27.  Phanerochaete 
chrysosporium As Pellets - 100 [222] 

28.  Phanerochaete 
chrysosporium 

Zn 
Se Immobilized pellets - 88.1 

56.2 [221] 

29.  Pleurotus sapidus 

Cd 
Hg 

 
Cd 
Hg 

Immobilized live 
 

Heat inactivated 

96.57 
207.89 

 
127.12 
287.43 

- [205] 

30.  Rhizopus arrhizus 

Cu 
 
 
 

Cd 
 
 
 

Freeze dried 
Live 

Oven dried 
 

Freeze dried 
Live 

Oven dried 
 

191 
165 
190 

 
262 
243 
220 

 

- [223] 

Rajalakshmi et al 



BEPLS Vol 12 [10] September 2023                  482 | P a g e                ©2023 Author 

Sr Freeze dried 
Live 

Oven dried 

424 
342 
271 

31.  Rhizopus arrhizus Ni Living biomass 618.5 - [224] 

32.  Rhizopus arrhizus 
U 
Sr 
Cs 

Mycelial pellets - 
90 
44 
41 

[216] 

33.  Rhizopus arrhizus 
Env 3 Ni Living biomass 618.5 - [224] 

34.  Rhizopus oryzae Cu Viable 
Pretreated 

19.4 
43.7 - [225] 

35.  Rhizopus oryzae Cu Biomass 34.84 - [226] 

36.  Rhizopus nigricans Pb Self-immobilized fungus 83.5 - [227] 

37.  Rhizopus 
oligosporus Cu Biomass 79.37 - [228] 

38.  Rhodotorula 
mucilaginosa Hg - - 69.9 [38] 

39.  Trametes trogii U 
Modified pellets 

 
Native pellets 

447.4 
 
 

238.2 

- [229] 

 
CELL WALL STRUCTURES AND ITS ADSORPTION PROPERTIES 
The frontiers of fungal cell wall research are transitioning from a descriptive phase that outlines the main 
components of fungal walls to a more dynamic assessment of how the various cellular components 
assemble and modify in response to an external stimulus [41]. The molecular composition of the cell wall 
is a crucial factor that determines the ability of fungal bio sorption. The fungal cell wall is organized into 
various layers, whereas all the layers are deposited on the most conserved innermost layer. The fungal cell 
wall is a highly malleable skeleton that is essential for the cell's integrity, permeability, and survival [42].  
The cell wall contributes up to 30% of the fungus's dry mass, with polysaccharides making up the majority 
of it, to which different proteins are glycosylated. Composition of cell wall includes glucans (50-60%), chitin 
(2-20%), chitosan and glycosylated proteins (30-50% in yeast and 20-30% in filamentous fungi) [43], with 
considerably lesser quantities of lipids, pigments, and inorganic salts [44]. 
Fungal cell structures are composed of matrix components that are connected to form scaffolds of 
fibrous polysaccharides [45, 46]. Fungi can accumulate metals into their spores and filaments through the 
cell wall, which is essential for the survival and functioning of fungi [47]. Factors such as capability of the 
fungus to survive on extremely polluted environment; ability to exhibit metabolic reduction of heavy metal 
contamination; easy culturable methods are the additional advantages for employing fungal adsorbents in 
waste water treatment [48]. Potential of the bio-sorbent is determined by the ionic state of the biomass 
while the effectiveness depends on its porous structure and polarity. Fungal biomass has drawn 
tremendous attention as a metal chelating agent because of the increased presence of cell-wall material 
and also due to the diversity of active sites available for metal sequestration [17]. Active uptake of metal 
ions through the cell wall of fungi undergoes the process of cellular precipitation and valence conversion. 
The cell surface is negatively charged due to the presence of numerous anionic structures, such as glucan 
and chitin, which facilitates the binding of metal cations [33,47]. The presence of chitin-chitosan, glucuronic 
acid, phosphate, and polysaccharides on fungus cells contributes for heavy metal adsorption via ion 
exchange and coordination. Functional groups, including amine, carboxyl, hydroxyl, phosphate, and 
sulfhydryl, play a vital role in the adsorption of heavy metals and dyes [46, 49]. The surface of the fungal 
cell wall is rigid and composed of various components like lipids, polysaccharides and peptidoglycans 
which are rich in metal-binding ligands (e.g., -OH, -COOH, -HPO42-, SO42- -RCOO−, -NH2, and -SH) for the 
removal of inorganic metals. Among these functional groups, amines are active in metal uptake as it binds 
to anionic and cationic metal species through electrostatic interaction and surface complexation 
respectively [50]. The study by Joo et al. on lyophilized cells of P. eryngii have revealed the presence of 
carboxylic, amino, hydroxyl and methyl groups which have shown biosorption for the metals Cd(II) and 
Pb(II) [51]. Heavy metal remediation is mediated by a complex combination of natural polymers mainly 
composed of polysaccharides, nucleic acids, lipids and proteins [52]. Few researches on fungus have 
reported the presence of amino, thiol, hydroxide, phosphate and carboxylic groups on the cell wall of 
P. ostreatus which helps in the biosorption of heavy metals [53, 54, 55] Metal binding proteins and peptides 
mediate the biosorption of metals which was demonstrated by the utilization of Candida lipolytica derived 
lipoprotein in the remediation of cadmium, lead and zinc [56]. 
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VIRTUE OF FUNGAL BIOSORBENTS 
A majority of fungal bio-sorbents are safe due to their non-pathogenic properties and are readily accepted 
by the public for their practical applications [48, 57]. Since fungal biomass is considered as a low-value by-
product, and have good potential in various applications with promising growth attributes in diverse 
environments, it can act as an excellent source for the supply of non-living material for metal bio-sorbents 
[48, 58, 59]. The study by Park et.al. reported the practical application of dead biomass of Aspergillus niger 
showing complete removal of Cr (VI) when placed in contact with synthetic wastewater containing Cr(VI) 
[60]. Because of its filamentous structure, the separation of biomass from liquid media through filtration is 
relatively an easy process [40]. Many filamentous fungi are insensitive to low nutrition and can grow under 
diverse conditions such as temperature, aeration, pH [39, 61]. In contrast, yeast is widely accepted as a 
popular system for studying biosorption because of their a) desired actions during the molecular 
interaction between metal and microbe, b) ease of gene transformation, and c) due to the availability of a 
whole genomic sequence [62,63]. 
MECHANISM OF FUNGAL BIOSORPTION  
Fungal cell surfaces can be considered as a mosaic of several active sites where metal coordination 
complexes can occur. Because of the chemical properties and structural arrangement of the fungal cell wall, 
metals can be deposited on its surface or within its structure before entering the cellular core or might be 
bound together by other cytoplasmic substances and organelles [19, 64]. Metal absorption onto fungal cell 
surfaces is a two-step process, one is the stoichiometric interaction between the active sites and metal ions, 
and the other is progressive deposition of metals on cell surface [17]. 
Biosorption mechanisms can be classified into two categories based on the cell's metabolism- Metabolism 
dependent and metabolism independent mechanism. Metabolism dependent is an active metal uptake or 
bioaccumulation process that happens in living cells and are driven by the energy. Whereas metabolism 
independent is a passive metal uptake process which occurs both in live and dead cells [65]. The production 
of metal-binding proteins is facilitated by living cells, where the cells first bind randomly to the metal ions 
using the extracellular polymers followed by an active transport of metals inside by specific 
transmembrane transporter proteins. Once transported inside the cells, these metals are detoxified by 
binding to specific metal-binding proteins and later transports these metal protein complexes into the 
vacuoles for sequestration. Whereas dead cells absorb metals through functional groups on the surface [66, 
67, 68]. Dead cells are widely accepted over live due to their high environmental resistance, greater toxicity 
tolerance, less demand for nutrient supply to obtain their active state, and easy recovery of loaded metal 
ions and simpler reprocessing steps for the obtained biomaterial [69, 70]. The passive intake of metals is 
relatively quick and reversible [65, 68] 
Intracellular bioaccumulation  
Transportation of metal across the fungal cell membrane is metabolism dependent which yields 
intracellular metal accumulation in viable cells [65]. The permeability of cell membrane greatly influences 
the uptake of cations following the steps such as: a) metal ion tends towards the outer cell surface, b) 
adheres to the inner cell surface, and c) transports into the cytoplasm [71]. Metal uptake occurs in two 
modes: (i) direct transport via carriers such as Na and K, which provides the sufficient energy required for 
the transportation [30], and (ii) indirect transport via ligands such as peptides, phosphates and amino 
acids, etc.  The interaction of microorganisms with the metal ions differs with the type of metal transporting 
into the cytoplasm across the cell membrane. Accumulation, precipitation, redox and metabolic by-pass are 
few reported mechanisms that are independent of metabolic activity that is frequently associated with 
fungi's active defense mechanism [72, 73, 74]. 
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Figure 1. Schematic representation of Biosorption mechanisms showing fungal cell- metal 

interactions. 
Metal ions that enter the cell are segregated into various organelles such as mitochondria and vacuoles 
[75]. Metal ions such as Co, Cu, Zn, Cd, and Hg readily activate the metallothionines (MT), which are 
cysteine-rich and possess a good metal binding property [76].  By contrast to metallotheiones, 
phytochelatins, glutathiones (GSH) and some other cellular thiols have also displayed higher sensitivity to 
toxic metal ions [63,77]. The biosorption of copper by Aspergillus niger was found to be mainly because of 
metabolically active process that results in bioaccumulation [71]. Involvement of many genes in the 
tolerance and detoxification of metals have been reported. The yeast, S. cerevisiae exhibited the tolerance 
against Cu, Co, Cr and As. Modifications of cell surface by genetic tools influence the metal adsorption 
efficiency of the biomaterial. Cell surface-engineered S. cerevisiae produce histidine hexapeptide that can 
initiate better uptake of copper and shows enhanced self-accumulating properties [78, 79, 80]. Fungal 
vacuoles can regulate the cytosolic metal ion concentrations and also contributes in the adsorption and 
detoxification of metal ions. The investigation by Ramsay and Gadd confirmed that the mutants of 
Saccharomyces cerevisiae defective in vacuolar function exhibited higher sensitivity and lower adsorption 
capacity for the metals such as Zn, Mn, Co, and Ni [81]. 
Cell surface sorption/ precipitation  
Physical adsorption 
Physical adsorption is caused by non-specific force of attraction similar to van der Waals' force, which 
is both rapid and reversible [82]. Metal ions are transported from liquid to solid phase in three main steps 
that includes: (i) transfer of ion across the liquid layer of the particle; (ii) transfer happening within the 
particle boundary; and (iii) adsorption onto the external surface and later into the particle [83]. 
Electrostatic adsorption, on the other hand, is caused by coulombic forces of attraction among the charged 
solute and the adsorbing phase of biomaterial [84, 85, 86]. The biosorption of metals like cadmium, copper, 
and cobalt by dead biomasses of algae, fungus, and yeasts is thought to occur via electrostatic interactions 
between metal ions in aqueous solutions and microbial cell walls [87,88]. Electrostatic interactions have 
been shown to be responsible for chromium biosorption onto Ganoderma and Aspergillus species [19].  
Ion Exchange 
 Ion exchange is the phenomenon in which the adsorbent release ions as a substitute when it comes in 
contact with an oppositely charged ion of the ligands that is present on the cell wall [89]. This technology 
cannot be applied on a wider scale since it is more expensive and can be primarily used to remediate the 
water effluents with lower concentration of heavy metals [17]. The concept of ion exchange as a significant 
method in bio sorption involves a range of physical (electrostatic or van der Waals forces) and chemical 
binding (ionic or covalent bonding) [90, 91]. The cell walls of microorganisms are rich in polysaccharides 
to which bivalent metal ions interact with their counterions [87]. The protonated form of amine groups 
which is cationic becomes neutral when deprotonated. Phosphate and carboxyl groups that are neutral on 
the other hand acquires negative charge if deprotonated. The relationship between electrostatic attraction 
and biosorption is defined by the type and the number of functional sites present in the sorbent, as well as 
based on the charges occupied, which is determined by the pH and pKa values of the corresponding group 
[92]. Tobin et al. showed the uptake of various heavy metal cations such Mn+2, Cu+2, Zn+2, Cd+2, Pb+2, Hg+2 
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due to the presence of carboxylate and phosphate groups on Rhizopus arrhizus biomass. Whereas, the 
adsorption of molybdate and vanadate anions is found to be pH dependent, this occurs due to the strong 
electrostatic attraction towards the positively charged functional groups [64].  
Furthermore, the removal of selected ions from multi-metal systems (such as industrial and sewage 
effluent) remains unaffected in the presence of competing metal ions. Biosorption of copper (89-100%) 
onto the fungus Ganoderma lucidum was facilitated via ion-exchange process [93]. The heavy metals like 
Pb(II) and Cd(II) are showed to be accumulated onto L. scrobiculatus, A. rubescens due to the availability of 
more active sites and exchanging ions [94, 95]. Higher dosage of Pleurotus platypus, Agaricus bisporus and 
Calocybe indica resulted in better removal of heavy metals such as Pb(II) and Cd(II) [96]. The SEM paired 
with an X-ray dispersion analyzer revealed that Pb+2 exchanged K+ and Ca+ on Mucor rouxii, indicating ion 
exchange as one of the key mechanisms for the biosorption of metal species onto the fungal strain. Both the 
species of Aspergillus and Mucor have biological polymers (chitin and chitosan) on their cell walls, which 
provide eminent metal chelating ability [97]. Similarly, Ghasemi et al. demonstrated the subsequent release 
of hydrogen ion during the adsorption of metal at a controlled pH [98]. 
Complexation 
Complexation is significant process that mediates the formation of a complex on the cell surface which 
mediates the removal of metal from the solution through the transition between sorbent-sorbate and 
metal-ligand interactions [70]. The number of ligands that a central atom carries in a complex is called 
coordination number. The complex formed when one ligand is attached to central atoms via two or more 
coordinated atoms is known as chelate [92]. The complex is constructed in such a way that neutral or 
anionic ligands usually surround the cationic central atoms. Such ligands are found to be present in the 
different functional groups of the fungus which includes the amino, phosphate, and hydroxy-carboxyl, 
which engage with metal ions in a systematic manner [69, 99]. 
Some fungi can synthesize organic acids, such as fumaric, malic and citric acids, which could chelate harmful 
heavy metals and lead to the development of organo-metallic complexes [17]. These acids facilitate 
the solubilization of metal complexes and metal leaching from their surfaces. Carboxyl groups present in 
polysaccharides and polymers of microorganisms involves in the biosorption or complexation of metals 
[19]. Heavy metal binding to biosorbents with diverse functional groups is influenced by ionic 
characteristics such as electronegativity, redox and ionization potential. It was shown that the removal of 
copper can be possible by the development of insoluble complexes between Cu2+ and anionic species like 
OH-, CO3-2, and SO4-2 on biosorbent surface [100].  
Extra cellular accumulation/ precipitation 
Precipitation can be dependent or independent of metabolic activities, which means that metal uptake can 
occur both in the aqueous solution and on the cell surface [13, 17]. Metal removal from aqueous solution is 
often linked with an active defense system of microorganisms, which react in the presence of toxic metal 
generating chemicals, enabling precipitation. The chemical interaction in a cellular metabolism-
independent precipitation may occur between the metal and the cell surface [17]. It is widely accepted that 
a combination of various mechanisms, each operating independently, can contribute to overall metal 
uptake. 
Few microorganisms produce extracellular polymeric substances (EPS) such as glycoprotein, 
lipopolysaccharides, peptides, etc. that are having considerable amount of anionic active groups and can 
biosorb toxic metal ions [101]. According to the few published studies, metal biosorption using EPS mainly 
focuses on Bacillus sp., Pseudomonas sp., sulfate-reducing bacteria (SRB), Cyanobacteria; however, EPS 
studies on fungus are limited with scarce information. Though few studies demonstrated the metal 
biosorption activity of the EPS secreted by the Bacillus sp., Pseudomonas sp., sulfate-reducing bacteria 
(SRB), Cyanobacteria, very few studies are available with the fungal EPS [102, 103]. In S. cerevisiae, the lead 
uptake by living cells is less than dead cells, whereas in A. pullans the lead uptake is greater in living cells. 
This could be because of extracellular polymeric substances secreted by the live A. pullulans [104].  
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Table 2: Various factors affecting the removal Efficiency and adsorption capacity of fungal species 
in contaminated water system. 

Fungal Species 

Source of 
Isolation 

M
odifications 

H
eavy m

etal 

Contact tim
e 

initial Tem
p 

Initial pH
 

Initial m
etal ion 

concentration 

Biosorbent 
dosage 

Rem
oval 

Efficiency (%
) / 

dsorption 
capacity (m

g/g) 

References 

Aspergillus 
flavus strain 

KRP1 

orest soil _ Hg _ _ 4.1
3 

10mg 
/L 

14.9g/L 
97.50% 

[202] 

Aspergillus 
 fumigatus 

_ Live  
 
 

Dead 

Pb 
Cd 

 
Pb 
Cd 

4-5h 28 
oC 

5 250 and 
10mg/L 

150mg/L 
and  

0.4mg/L 

21.57mg/g 
6.286mg/g 
3.65mg/g 
0.83mg/g 

[230] 

Aspergillus 
 niger 

Polluted air 
in a fuel 
station 

Iron 
oxide 

coated 

Cu 
 Ag  
Co  
Hg  
Zn 

24h 28 
oC 

5.5 100mg 
/L 

1g/L 37%  
48%  

71.4% 
 83.2% 
100% 

[231] 

Aspergillus 
 niger 

_ Alkaline 
treated 

Hg 2h 40 
oC 

3 250mg 
/L 

0.8g/L 40.53mg/g [156] 

Aspergillus 
 niger 

_ _ Cr 158
h 

35-
45 
oC 

2 50mg 
/l 

10g/L _ [60] 

Aspergillus  
tubingensis  

Merv4 

Plant 
sample 

Dead 
Biomass 

Zn 
Hg 

12-
24h 

30-
35 
oC 

5.5 200mg/
L 

0.2g/L 96% 
 91 % 

[232] 

Aspergillus  
versicolor 

_ _ Hg 24h 30 
oC 

6 20mg 
/L 

4g/L 75.6mg/g - 
>95% 

[126] 

Candida  
albicans 

River 
water 

Iron-
oxide 

coated  

Zn  
Cu  
Hg  
Co  
As  
Cd  
Ag  
Pb  
Cr 

24h 28 
oC 

5.5 100mg 
/L 

1g/L 22% 
31% 
36% 
37% 
40% 
46% 
51% 
57% 
76% 

[233] 

Candida  
parapsilosis 

Industrial 
wastewate

r 

_ Hg _ _ _ _ _ 80% [234] 

Ceriporia  
lacerata 

litter of 
invasive 

plant 

_ Cu 2h 25 

oC 
6 100mg 

/L 
2g/L 6.79mg/g [61] 

Cladosporium 
halotolerans 

gold mine 
area 

_ Hg _ _ _ 100mg 
/L 

_ 90.72% [235] 

Didymella  
glomerata 

Rhizospher
e soil 

samples 

_ Hg 2day
s 

_ _ 100mg 
/L 

_ 97% [236] 

Dendryphiella  
salina 

Sea water _ Hg 2day
s 

RT _ 36.94 20μL 80-92% [237] 

Funalia  
trogii 

_ Live  
 
 
 

Dead 

Hg  
Cd 
Zn 

 
Hg  
Cd 
Zn 

1h 20 
oC 

6 500mg 
/L 

_ 333mg/g 
164.8mg/g 
42.1mg/g  

 
  403.2mg/g 
191.6mg/g 

54mg/g 

[208] 

Mucor rouxii 
 IM-80 

Leather 
works 

_ Hg 24h 30 
oC 

5.5 100mg 
/L 

10g/L 95.30% [127] 

Penicillium  
canescens 

_ _ As 
 Hg 
Cd 
 Pb 

4h 20 
oC 

5 500mg 
/L 

1g/L 26.4mg/g 
54.8mg/g 

102.7mg/g 
213.2 mg/g 

[107] 

Penicilium 
purpurogenum 

Soil _ As 
 Hg 
Cd 

4h 20 
oC 

5 100mg 
/L 

1g/L 35.6mg/g, 
70.4mg/g, 

[118] 
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 Pb 110.4 mg/g, 
252.8mg/g 

Phanerochaete 
chrysosporium 

 _ Live  
Dead 

Hg 1h 20 
oC 

6 200mg 
/L 

_ 83.10mg/g 
102.15mg/g 

[238] 

Pleurotus 
 eryngii 

_ _ Hg 5mi
n 

30 C 7 7.5mg 
/L 

0.25g/L 34.01mg/g 
98.7% 

[115] 

 Pleurotus  
ostreatus 

_ Live  
 

Dead 

Cr  360
h 
 

22m
ins 

28 
oC 

5.6 25mg 
/L 

50mg/L 169.84mg/g 
-100% 

368.21mg/g 
-100% 

[69] 

 Pleurotus  
ostreatus 

_ Dead Cd 10m
in 

26 
oC 

6 10mg 
/L 

0.5g/L _ [239] 

Pleurotus  
sajur-caju 

_ Live  
Dead 

Hg 1h 20 
oC 

5.5 200mg 
/L 

_ 81% [240] 

Polyporus  
squamosus 

_ _ Hg 4h 20 
oC 

5.3 47.39mg
/L 

_ 3.54mg/g -
35.37% 

[241] 

Rhizopus 
 arrhizus 

 _ live  
 Dead 

Ni 6h 25 
oC 

6 100mg 
/L 

0.5mg/L 169.8mg/g 
368.2 mg/g 

[242] 

Rhizopus 
 cohnii 

_ _ Cd 2h _ 4.5 100mg 
/l 

1g/L 40.5mg/g -
80% 

[58] 

Rhizopus  
Oligosporus 

corn 
processing 
wastewater 

_ Hg 6h 30 
oC 

6 100mg 
/L 

1g/L 33.33mg/g [119] 

Saccharomyces 
cerevisiae 

_ Magnetic
ally 

modified 

Hg 1.5h 35 
oC 

5 200mg 
/L 

1g/L 114.6mg/g [113] 

Streptomyces 
ciscaucasicus 

  Live 
Dead 

Zn 8h 28 
oC 

5 150mg 
/L 

2000mg/L 42.75mg/g 
54mg/g 

[243] 

Tolypocladium 
sp. -Mycelium  

Sterilae MS 
2929 

Industrial 
waste 

Methano
l treated 

Hg 3day
s 

_ 7 _ _ 161mg/g [244] 

Trametes  
versicolor 

_ Live  
Dead 

Cd 1h 25 
oC 

5.5 600mg 
/L 

25mg/L 102.3mg/g 
120.6mg/g 

[245] 

 
FACTORS INFLUENCING IN FUNGAL BIO-SORPTION EFFICIENCY 
Contact time  
The dispersion of metal ions between solution and sorbent are affected by the contact time. The bio 
sorption rate was found to be rapid (90%) in the initial period (within an hour) due to the availability of 
free active sites. But as the time increases, the efficiency of biosorption decreases due to the increase in the 
concentration of saturated metal ions [105]. The rapid biosorption was observed for Pb(II) by dead 
biomasses of Rhizopus sp. and Aspergillus niger in 1hr with greater biosorption efficiencies of 9.21 and 8.94 
mg/g biomass respectively [106]. The equilibrium period varies with physical properties of sorbent 
material such as pore size distribution, morphology, and charge density etc. Adsorption equilibrium might 
also be influenced by factors such as adsorbent dose, metal ion concentration, and the concentration of 
competing metal ions [107]. 
Among yeast, molds and mushrooms, filamentous fungi are found to be more utile in the metal remediation 
from liquid media than any other species [106, 108, 109]. Aspergillus niger exhibited strong resistance to 
heavy metals such as Cu, Cd, Ni and was also found to be efficient in removing Cr up to 60% [25]. The study 
on filamentous fungi, Trichoderma sp. revealed the uptake of Zn, Cd, Pb, Cu, and Ar [110, 111]. Several yeast 
species such as Candida albicans, Saccharomyces cerevisiae, Candida tropicalis etc. are egressed as a good 
biosorbents due to the presence of glycoprotein and their involvement in bioremoval [112]. Saccharomyces 
cerevisiae can remove up to 114.5mg of Hg /g of biomass within 90min [113] and induce the uptake of 60% 
uranium in 15min of contact [108]. da Rocha et al.  studied the efficiency of the mushroom, 

Rajalakshmi et al 



BEPLS Vol 12 [10] September 2023                  488 | P a g e                ©2023 Author 

Pleurotusostreatus in the adsorption of Cr metal and the study noticed the uptake of 100% Pb from polluted 
water [114]. Pleurotus eryngii showed 98% of Hg uptake within 5min of contact time, whereas the efficiency 
of Pleurotus eous was recorded to be around 93.2% for Pb [115, 116]. The equilibrium period required for 
the adsorption of mercury on immobilised carboxymethylcellulose by Phanerochaete chrysosporium was 
approximately 1 hour [117], Penicillium purpurogenum attained equilibrium state for metal adsorption by 
4h [118]. Equilibrium time for bioremoval of Hg vary between different species. Immobilized Pleurotus 
sapidus exhibited equilibrium for bioremoval at 1hr [117], whereas it was determined to be 6h for Rhizopus 
oligosporus [119]. Ozsoy and van reported the biosorption capacity of dried Rhizopus oligosporus biomass 
for Ni (II) ions during the first 6h. Say et al.  investigated the application of the fungus Penicillium canescens 
in the removal of lead, mercury and cadmium metal ions in 4 h [120].  
Optimum temperature 
The temperature of sorption medium is an important parameter that mediate the bioremoval of metal ions. 
Temperature influences the energy-dependent mechanism of metal adsorption within the range of 20-35°C 
[62]. Temperature also influences integrity of cell membrane, conformation, and oxidation/ reduction of 
chemical compounds. Temperature fluctuations alters the process of metal removal since it is primarily 
dependent on the physiochemical properties of the medium [121]. The kinetic energy and surface activities 
of the solute increases at higher temperatures resulting in the enhancement of biosorption. However, it has 
been discovered that increasing the temperature reduces the biosorption ability of the biomass and causes 
extracellular damage to the biosorbent. Low temperature, on the other hand, has an effect on live cell 
systems and influences the auxiliary metabolism-dependent mechanisms that facilitate biosorption [19]. 
The maximum Ni and Pb bioremoval by S. cerevisiae was attained at 25 oC and was observed to decrease 
when the temperature was raised to 40 oC [122]. Aspergillus versicolor recorded significant removal of Fe 
with maximum of 22.2 mg/g at 31oC [121]. The study on Hg(II) removal efficiency by Pleurotus eryngii 
determined as 98.7% at 30oC that further decreased to 90.42, 85.4 and 80.5% with increasing temperatures 
of 40, 50 and 60oC respectively [115]. Two strains of Aspergillus sp. (Aspergillus fumigatus RH05 and 
Aspergillus flavus RH07) showed maximum Zn uptake at 28oC [123]. The bioremoval of Cu (II) using 
Aspergillus flavus was 40.8% at an optimal temperature of26°C while for Pb removal (45.5%) by Aspergillus 
niger, the optimal temperature was 37°C [124]. The maximum biosorption efficiency of Alternaria alternata 
and Penicillium aurantiogriseum for cadmium and mercury was achieved at the temperature of 30°C [125]. 
Unfavourable Hg(II) sorption by Aspergillus versicolor and Rhizopus oligosporus was noticed at higher 
temperature [119, 126]. Exothermic Hg(II) removal by Mucor rouxii IM-80 showed the maximum removal 
upto 95.3% at 30oC which decreased to 71.4% at 40oC [127]. Trichoderma fungus exhibited better 
biosorption rate for Pb ions of about 98.8% at 25 oC which occurs after 120 mins of contact time [128]. 
Dead biomass of Aspergillus terreus exhibited maximum biosorption of Cr(VI) at 27 oC [129]. El Maghrabi 
et al. revealed that the rate of biosorption of Mn on Aspergillus versicolor was maximum at 90ppm 
concentration within 15 mins at 31 oC [130]. 
Optimum pH  
pH remains as a vital factor in influencing the biosorptive process by affecting chemistry of metal solution, 
metallic ion competition, ligand activities in biomass, and in the activation of cell surface binding sites [115, 
131, 132]. At lower pH levels (pH < 5), binding sites especially amine/amino and carbonyl groups would 
be more readily protonated in close association with the hydronium ions, resulting in a weaker affinity with 
Hg(II) ion because of the repulsive forces which in turn increases the competition between H3O1 ions and 
metal ions in the solution. At higher pH levels (pH > 5), binding sites become more active by carrying 
negative charges, thus the metal ions with a positive charge are easily adsorbed on cell surface with 
subsequent attraction [133]. Adsorption tests performed at pH more than 7.0, showed increased 
precipitation or hydroxide formation with metal ions due to excess of ions in the solution [134].  
According to Soleimani et al., removal of cadmium using Aspergillus versicolor increased with the decrease 
in pH. Cadmium uptake was shown to be maximum at pH 4.0 for both live and dead biomass, and at pH 6.0 
for dried biomass [135]. The effect of pH on biosorption of mercuric ions was investigated using various 
fungal biomasses. Maximum adsorption efficiency was achieved at pH range of 5.0-7.0 by R. oligosporus 
[119], penicillium canescens [107], P. eryngii [115], A. versicolor [126]. At a pH of 5.0, the dead biomass of 
Trichoderma sp. BSCR02 showed maximum adsorption efficiency of 82.3% for chromium at 35oC with 
200mg/l of metal ion concentration [136]. Whereas, maximum biosorption of cadmium and mercury using 
Alternaria alternata and Penicillium aurantiogriseum was depicted at pH 6.0. As a result, the optimal pH for 
maximum Hg(II) sorption was determined to be between 5.0 and 6.0. [125] or around 7.0 [40]. The 
biosorption capacity of Penicillium sp. for Pb is highly sensitive and was found to be directly proportional 
to pH. Maximum bioremoval was determined at pH 5.5 for both dry and wet biomass [128]. Whereas, at pH 
4.0, the maximum removal values of Pb(II) and Ni(II) for Penicillium sp. were 47% and 76% with a contact 
time of 65 and 89 mins respectively [137]. The bioremoval capacity of Aspergillus fumigatus for cadmium 
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was better up to pH 5.0 and then gradually decreased with further rise in pH [138, 139]. Fusarium sp. 
showed potential adsorption of Zinc for dead biomass (62.0%) than live biomass (42.3%) at pH 6.0 [140]. 
The zinc removal by live and growing strains of A. fumigatus and A. flavus differs with variations in pH i.e., 
optimal pH for growth and bioremoval of metal ions in both strains were 5.0 and 4.0, respectively [123].  
Metal ion concentration 
The metal ion concentration plays an important role as a dynamic force to establish sorbtion between solid 
and liquid media [141]. The fungal cell walls have a negative charge due to the arrangement of metal 
binding groups, which includes the amino, sulphate, carboxyl, and phosphate groups. Phosphate-containing 
teichoic acid in the fungal cell wall is predominantly responsible for metal binding [142]. Soft metal form 
more stable bonds with nitrogen or sulphur-containing (soft) ligands [143]. The biosorption capacity of 
biomass increase initially with the increase in metal ion concentration and further reaches a plateau 
value, indicating the saturation of available active sites on the adsorbent surface. Further increment of 
metal concentration decreases the percentage of adsorption due to unavailability of free binding sites.  
The maximum adsorption capabilities of Penicillium canescens dry fungal biomass was 102.7 mg/g for 
Cd(II), and 213.2 mg/g for Pb (II) [107].  Biosorption capacities of the M. rouxii IM-80 strain for the Hg (II) 
ions was assessed at a concentration ranging between 100 and 500 mg/L [127]. The magnetically modified 
yeast cell’s capacity for mercury (II) biosorption was initially higher until an equilibrium concentration of 
Hg2+ was attained and further a plateau value of 150 mg/L with a maximum biosorption of 114.6 mg/g 
was observed [113]. These results may be due to the competition among the number of metal ions to 
bind free active sites or due to the lack of active sites on the surface of biomass at higher metal 
concentrations [144]. The efficiency declines after reaching the optimum concentration level due to an 
increase in metal dose beyond the toxicity level that fungus gets damaged [136]. Sorption capacity of 
Beauveria bassiana increased to 13.5 mg/g for cadmium, 12.2 mg/g for copper and zinc, and 11.3 mg/g for 
chromium with the increase in the initial metal ion concentration of 100 mg/L [145]. Whereas, the sorption 
capacity of Aspergillus versicolor isolate was about 43.6 mg/g and 51.9mg/g for Cu (II) and Pb (II) 
respectively at an initial metal concentration of 300mg/L [146] which is less than the results obtained by 
Fusarium solani [147] but more than that obtained by Aspergillus niger [148].  Similar trend was shown by 
El-Sayed with live and dead biomasses of Aspergillus awamori, where maximum cadmium uptake capacity 
was observed at an initial metal ion concentration of about 500mg/L with 1g/L of biosorbent dosage [149]. 
Biosorbent dosage 
The adsorbent dosage strongly influences the extent and percentage of biosorption. In most of the cases, 
higher metal uptake occurs when biosorbent dose is low. Generally, the biosorption of solute increases with 
an increase in the concentration of biomass, due to the availability of more exchangeable sites by the 
enhancement in the surface area of biosorbent [150]. But the interference between the active binding sites 
cannot be reversed, as it depends on the uptake capacity of the sorbent [72]. Similarly, the increase in the 
concentration of R. arrhizus biomass (from 0.15g/L to 0.50g/L) resulted in increased uptake of copper 
(29.83mg) at the concentration of 30mg/L [151]. However, the higher concentration of biomass showed 
rapid adsorption by producing more concentration of the cell than the metal in the solution. The percentage 
of lead removal increased to 52.5%, 59.5%, and 66.5% with the increasing cell mass for Aspergillus flavus 
HF5, Aspergillus sp. RBSS-303, and Aspergillus caespitosus respectively at 0.75g of biosorbent dosage/L of 
lead solution [152]. Argun et al. correlated the parallel tendency of adsorption efficiency and adsorbent 
dose due to the increasing surface area of unbounded sites [153]. 
The increase in sorbent dosage of macrofungus, Ganoderma carnosumfrom 0.2 to 4.0 g/L resulted in the 
rapid increase in the bio-removal of Pb (II) ions from 5.6% to 75.16% [154].  Bioremoval of Pb(II) may be 
due to the increase in the availability of more active sites for the complexation of heavy metal ions [155]. 
Increase in sorbent dosage does not lead to a significant improvement in biosorption capacity after the 
attainment of equilibrium. Further metal uptake and the reduction rate declined as biosorbent dosage 
increased. When the sorbent dose was increased from 0.8 to 16.0 g/L, Hg absorption capacity of Aspergillus 
niger decreased from 21.8 to 2.7 mg/g [156]. Beebi et al. indicated that the biosorption efficiency of dry 
fungal biomass is elevated even at high metal ion concentration in which percentage removal of nickel and 
copper for the initial concentration of 20ppm and 100ppm are 75.5 to 71% and 55.5 to 50% respectively 
[157].  Similarly, Mahmoud et al. revealed noticeable elevation in the removal efficiency for Al, Fe and Mn 
using 3g of dried biomass of Aspergillus oryzae upto 71.9, 69, and 58% respectively [158]. 2.5g of Aspergillus 
flavus dead biomass have maximum chromium removal efficiency of about 92%, while increasing the 
adsorbent dosage had no effect on adsorption [159]. The biosorption of Nickel by dried Rhizopus 
oligosporus was analyzed for various biosorbent doses ranging from 0.5 to 5g/l, and it was reported that 
the biosorption efficiency declines as the biosorbent dosage increases which might be due to the 
aggregation of biosorbent particles that may inhibit the sorption process [160]. 
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PROBLEMS CONSOCIATED WITH FUNGAL BIOSORPTION TECHNOLOGY AND SUITABLE REMEDIES 
Exhausted bio-adsorbents and metal ions 
The fate of exhausted bio-adsorbents obtained during the elution process is the fundamental issue resulting 
from the biotechnological use of biosorbents in the remediation of toxic pollutants. Measures need to be 
adopted in such a way that fixing one problem should not result in the emergence of a new one [161]. Issues 
related with safe disposal of exhausted sorbent materials and recovery of the solute from metal ion loaded 
solutions are to be addressed. 

  
Figure 2.  Flow chart showing the valorisation and management possibilities of exhausted 

biosorbent loaded with metal ions. 
 
Though metal loaded biomaterial can be disposed through landfills or incineration; landfill is gaining less 
attention as it may cause groundwater contamination. Whereas incineration is limited only to non-
immobilized biomaterial since biomass immobilized in a polymeric matrix is non-viable. The recovery of 
solute can be carried out by the process such as electroextraction. It was evidenced that use of 
electrowinning/ electroextraction process is often feasible for the metal recovery from concentrated metal 
solutions [162]. Moreover, microbial biomasses originated from the industries not only polluting the 
environment but also lead to the loss of economy. For example, the fungal wastes generated after industrial 
production of fruiting bodies from Ganoderma lucidum showed the removal efficiency of about 87% and 
84% for Pb(II) and Cd(II) respectively [163]. If the biomass is inexpensive or if processing and 
transportation costs are low, the use of metal rich adsorbent materials to absorb other solutes can be easily 
achieved. Biosorption experiment on molybdate-loaded chitosan beads showed that molybdate's chelating 
affinity can be employed to recover As(V) from aqueous systems [164]. Like this, the generated biosorbent 
wastes could serve its purpose by being reused to mitigate their own damage by giving worth to their 
disposed wastes in order to fulfil goals of a circular economy. Utilization of waste fungal biomasses in the 
process of metal removal will reduce the problems caused by the pollutants in the environmental 
protection, and provide a potential method of valorization. 
Valorization possibilities of exhausted biosorbents 
The biosorbents saturated with heavy metals after adsorption are examined from both biotechnological 
and ecological standpoint, in order to overcome several obstacles of exhausted biosorbents.  The need to 
strengthen the pertinency of sorption on a broader scale before employment of biosorbents to treat 
industrial effluent is rising [165]. Recent researches have shown few possible measures for valorization of 
metal loaded biosorbents, such as: recovery and recycling of sorbent material, utilization of saturated metal 
loaded biomaterials as soil fertilizers for the lands deficient in key microelements, and pyrolysis of 
biomaterial in proper circumstances [161]. 
The most acceptable method in the valorization of exhausted metal ions is the regeneration of sorbents by 
desorption, which in turn can be reapplicable in industrial activities and adsorption cycles [161]. The 
desorption of ions is possible when desorption agents with suitable experimental conditions are used in 
the treatment of exhausted biosorbents. Adsorbed ions are substituted by other ions from the agents. H2SO4, 
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HCl, KNO3, CaCl2, EDTA etc. have been used as the desorption agents [166, 167, 168, 169, 170, and 171]. 
The efficient desorption method must be modelled in such a way that, optimum pH of biosorption should 
be different with the pH of desorption agent in order to facilitate the shift in the elementary equilibrium. 
The amount of exhausted biomaterial must be higher than the volume of desorptive agent solution to 
minimize the cost. The process must be optimized at ambient temperature considering the economic 
importance in process development for industrial biosorption [161]. Even though, this process has many 
advantages like, easy recovery, simple method of regeneration, low operating cost, it also faced a major 
drawback due to less rigid and declining properties of biosorbent which became the main reason that 
hinders the wide applicability of desorption [172, 173]. Sorbents disposed by incineration or landfills have 
serious ecological implications that may lead to higher toxicity [174, 175, 176] In order to improve the 
ecological quality of biosorption, more valorization solutions for treating exhausted biosorbents must be 
investigated [175].  
Considering the main advantages of biosorption process, the exhausted biomasses shall be used in 
agriculture as an alternate fertilizer to improve the soil quality. Valorization possibilities interfere with the 
significant amount of metal ions retained in biomasses and also influence the regeneration of biosorbents 
[177]. Release of the retained metal ion which are rich in macronutrients such as N, P, Ca in the biomass 
reach the soil and enhance fertility [178, 179, 180]. But unfortunately, all the saturated biomasses cannot 
be used as soil fertilizers, as it should meet some conditions. Chemical composition of treated industrial 
effluents must be simple and well-known, the biomasses used in biosorption must be easily degradable and 
must not be a source of soil pollutant [180, 181]. In order to vindicate all these conditions, huge amount of 
exhausted biomasses resulted from industries are often used in soil nourishment and such biomass are less 
expensive due to its huge availability [181, 182]. The washing waters treated in the depositions baths after 
metallic coatings (Cu(II), Zn(II), Ni(II) plating) have high concentrations of given metal ion with low level 
of toxic ions or organic compounds [183, 184]. This may have some advantages: provide safe metal ions 
with role of microelements (non-toxic) and thereafter the metal removal from their surface, washing water 
can be recycled which are beneficial for environmental sustainability [182, 183, 184]. In case of agricultural 
and wood biomasses, the cellulose and hemicellulose content are high which requires longer time in 
degradation. Such biomasses could be used in moist soil, where desorption liberates metal ions into the soil 
and slow degradation of biomass improves air circulation and hydrological properties [185, 186, 187]. Even 
though the exhausted biosorbent have many agricultural benefits in solving inadequacies related to 
biosorbents regeneration, this valorization has a few limitations: solely non-toxic metals from some 
industrial effluents., uncontrolled release of metal ions into soil from the surface of biosorbent [188], 
requires huge quantity of exhausted biomass for soil treatment due to the presence of low content of 
nutrients and essential microelements. Therefore, other valorization possibilities should be explored to 
achieve sustainable environment. 
The thermochemical conversion (pyrolysis) is the most accepted method of valorization, due to its 
economically viable and easily adaptive nature [189]. Even though, it was considered as a good method for 
reducing wastes and limits landfills, current research investigations have shown that pyrolysis of biomass 
done under well-defined circumstances can be transformed into more economically valuable value-
added goods [190].  During pyrolysis, following bio sorption, the exhausted biomass is dried and ground 
before being subjected to a thermochemical conversion at a specific temperature (not exceeding 800oC) 
that is suitable for a particular biomass [191]. The products of pyrolysis such as biomass, biochar and heat 
produced after the pyrolysis can be individually victimized [190, 191, 192, 193 and 194]. The solid 
residue/biochar resulted from the pyrolysis have more applications in soil amendment, nanoparticle 
synthesis, additives and in alloy manufacturing, etc. [195, 196, 197 and 198]. The pyrolysis of biomass 
wastes explores more significant advantages compared to the other two valorization possibilities, as it can 
be utilized for all forms of exhausted biomasses (both toxic and non-toxic) and can be easily applicable in 
large industrial sectors due to its simple operating steps (drying and grinding). Although, the products 
resulted after pyrolysis have high economical worth that greatly aid in the betterment of process. Few 
drawbacks such as the requirement of high capital investment (for equipments, instruments etc.) for the 
implementation of process, more attention for technological installations during large scale operations in 
order to achieve environmental sustainability, presence of toxic metal species (organic and inorganic 
compounds) in the final biproducts(biochar) obtained after pyrolysis are to be still addressed.  
 
SUCCEEDING DIRECTIONS AND CHALLENGES FOR RESEARCH ON FUNGAL BIO-ADSORBENTS 
Although the development of biosorption and its tools are optimized in a larger extent, the industrial 
applications are still limited. The major reason behind this limitation might be due to the failures or poor 
understandings about the mechanisms of biosorption technology. The present drawbacks and 
advancements in this field can be treated with fungal biomaterials. For decades, fungi have been considered 
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as an economically feasible promising biomaterial for bioremediation of toxic metal pollutants from 
wastewater effluents due to their unique features. Challenges in formulating fungal bio sorption largely 
depends on the factors such as (i) identification and selection of novel potential biosorbents (ii) 
construction of biosorption models for industrial applications (iii) scaling up of effective biosorption 
process at varying environments (iv) scaling down the assessment costs for biosorbent in market (v) 
introduction of molecular tools to enhance the rate of biosorption by the construction of genetically 
modified organisms. Identification of eco-friendly approach also should pick up a low-cost biomaterial and 
a suitable immobilization technique [199]. Implementation of novel tools, and enhancement of immobilized 
biosorbent properties such as porosity, and, surface integrity are important factors that needs to be further 
refined. The use of hybrid technologies has become the major solution to the existing problem, in which 
several processes are combined to achieve the target of absorption at the commercial scale. Methods such 
as intra-biotechnological (bio-sorption, bio-reduction and bio-precipitation) or inter-biotechnological 
(chemical precipitation, electrochemical processes etc.) is receiving wide applications in the metal removal. 
To attract biosorbent technology, specific strategies for accepting the saturated biomaterial must be 
formulated, where the biosorbent can be further processed. Renewal and desorption of biomass or to 
transform the recovered metals into a usable value-added product are major challenges. Developing 
strategies involving a multidisciplinary approach that combines technological and fundamental sorption 
sciences provide innovative technology in metal sequestration. Major drawbacks such as inefficient metal 
remediation tools, usage of more chemical reagent, high energy requirements, toxic sludge or wastes 
production with disposal challenges, have often become the fundamental contentions to support biological 
approach to offer potential solutions to the remarkable problems caused by metal toxicity.  
 
CONCLUSION 
The present review illustrates several successful examples of biosorbents developed from different 
biomasses and their practical applications in the removal and recovery of heavy metals. The fungal biomass 
used as bio-adsorbents for heavy metal sequestration are cost-effective and are reported to be a beneficial 
alternative for the existing commercial adsorbents. The mechanisms and adsorptive properties of fungal 
adsorbents are discussed. Though few literatures have been reported on the removal efficiency of fungal 
adsorbents. Yet, less attention has been given to this field of research towards solving industrial needs. 
Future perspectives might focus in the removing properties of bio-adsorbents by enhancing modification 
tools (acid, alkali/base, and thermal treatment), desorption mechanisms and regeneration of adsorbents, 
recovery of metal ions. Aside from biosorption, the other properties of microorganisms and their 
interactions with other microorganisms that are part of metal complexation, metal transformation, metal 
reduction, metal crystallization, metals binding with proteins and metal dissolution should be assessed at 
the large scale. The use of hybrid biological advancements such are bioleaching, biofloatation and 
bioreduction should also be measured for metal recovery from wastewater.  
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