Study of Heterotic performance of F_{1} crosses for Grain yield and its component traits in bread wheat (Triticum aestivum L. em Thell)

Tabassum* ${ }^{* 1}$, Anil Kumar ${ }^{1}$, BirendraPrasad ${ }^{1}$ and Deepanker Pandey ${ }^{2}$
1-Department of Genetics and Plant Breeding, College of Agriculture, Govind Ballabh Pant University of Agriculture and Technology, Pantnagar, U.S. Nagar, 263145, Uttarakhand, India.
2-National Seed Association of India, New Delhi.
*Corresponding author
Email of corresponding author- tabassum12081992@gmail.com

Abstract

The present investigation was conducted to ascertain the extent of heterosis in F1 generation to identify superior cross combinations in bread wheat. A set of $36 F_{1 s}$ was generated by crossing 12 female lines with three testers in line \times tester mating design. F1s along with 15 parental lines and two check varieties were evaluated in randomized block design with three replications. Estimation of heterosis over mid parent (relative heterosis), better parent (heterobeltiosis) and two check varieties (economic heterosis) expressed as percent increase or decrease was carried out. Based on results of this study, nineteen out of 36 F1s were recognized as the best heterotic hybrids for different traits. Results revealed that the best heterotic cross for grain yield per plant was DBW $88 \times$ WH 1105 followed by DBW $88 \times$ UP 2672, WH $1139 \times$ HD 3059, DBW $88 \times$ HD 3059 and PBW $644 \times$ WH 1105. Therefore, identified superior cross combinations could be utilized in yield improvement programmes.

Keywords: Bread wheat, Grain yield, Heterosis, Line x tester.
Accepted 01.11.2019

INTRODUCTION

Wheat is an important cereal crop of the world and is used in making of a wide range of products from chapatti to processed foods and numerous industrial products. It is considered as staple food in India and play important role in fulfilling the countries food requirements. Wheat plant is widely adapted to different regions of the world. In India its cultivation extends from about 90N Palni hills in Tamil Nadu to about 300N Srinagar, Jammu and Kashmir [1]. Wheat has good nutrition profile with about 12.0 per cent protein, 1.8 per cent lipids, 1.8 per cent ash, 2.0 per cent reducing sugars, 6.7 per cent pentosans, 59.2 per cent starch, 70 per cent total carbohydrates and provides $314 \mathrm{~K} \mathrm{cal} / 100 \mathrm{~g}$ of food. It is also a good source of minerals and vitamins viz., calcium ($37 \mathrm{mg} / 100 \mathrm{~g}$), iron ($4.1 \mathrm{mg} / 100 \mathrm{~g}$), thiamine ($0.45 \mathrm{mg} / 100 \mathrm{~g}$), riboflavin $(0.13 \mathrm{mg} / 100 \mathrm{~g})$ and nicotinic acid $(5.4 \mathrm{mg} / 100 \mathrm{~g})$ [2]. Wheat is consumed in the form of a wide range of products from chapatti to processed foods and numerous industrial products for which its flour is specifically suitable[3].This versatile suitability of wheat flour is provided by the virtue of gluten, a protein formed by the combination of gliadin and glutenin. Its baking quality makes it relatively more important as a human food than any other cereal grains. India is the second largest producer of wheat in the world after China [4].In India during 2015-16, 30.23 million hectares area was under wheat cultivation with 93.50 million tonnes production and $3093 \mathrm{~kg} /$ ha productivity [5].
Much of the emphasis in wheat breeding has been placed on increasing productivity of wheat crop in response to the pressure for an adequate food supply caused by continuously increasing population of India and the world as a whole. One way to achieve this target is through heterosis breeding, a strong tool to take a quantum jump in production and productivity under various agro-climatic conditions[6].The concept of heterosis breeding has been extensively used in breeding of open pollinated crops, such as maize. At present, hybrid breeding is also being focussed in self pollinated crops, including wheat.

Tabassum et al

Heterosis refers to the superiority of F1 hybrids in one or more characters over its parents. This superiority is estimated over the mid parent, known as average heterosis or relative heterosis, over better parent referred to as heterobeltiosis and in relation to the best commercial variety of the crop, known as economic, standard or useful heterosis. Standard heterosis is the only estimate of heterosis having practical value [7].Hybrid vigour term is also used as a synonym for heterosis and is articulated as an increase in vigour, size, growth rate, yield or other characteristics. Wheat being a highly self-pollinated crop, scope for exploitation of hybrid vigour depends on the direction and magnitude of heterosis, biological feasibility of crop and nature of gene action. It is realized that high yielding lines may not necessarily be able to transmit their superiority to their hybrids [8].The present line \times tester study was, therefore, conducted to ascertain the extent of heterosis in F1 generation to identify superior cross combinations for further use in improvement programmes in wheat.

MATERIAL AND METHODS

A set of $36 \mathrm{~F}_{1 \mathrm{~s}}$ was generated by crossing 12 female lines of bread wheat viz., HD 3091, UP 2848, PBW 644, WH 1139, PBW 681, DBW 88, UP 2845, UP 2696, WH 1126, HD 3123, UP 2425 and UP 2554 with three testers viz., WH 1105, UP 2672 and HD 3059 in Line x Tester mating design. All the F1s along with 15 parental lines and two check varieties were evaluated in randomized block design with three replications at Norman E. Borlaug Crop Research Centre, G. B. Pant University of Agriculture and Technology, Pantnagar. The experimental material was planted in two rows of one metre length. Row to row spacing was maintained at 20 cm and plant to plant spacing was 10 cm . Observations were recorded on fourteen biometrical characters. Data were recorded on five randomly selected competitive plants per plot for number of tillers per plant, peduncle length, plant height, spike length, flag leaf area, number of spikelets per spike, number of grains per spike, 1000 grain weight, grain weight per spike, harvest index, biological yield per plant and grain yield per plant. Two characters namely days to 75% heading and days to maturity were recorded on per plot basis.

Estimation of heterosis

Heterosis was estimated as percent deviation in the performance of F1 hybrid over the mid-parent (average or relative heterosis), better parent (heterobeltiosis) and check parent (standard heterosis) [9] for each character using the following formulae:
a) Relative heterosis $\quad=\frac{\overline{F 1}-\overline{M P}}{\overline{M P}} \times 100$
b) Heterobeltiosis $=\frac{\overline{F 1}-\overline{B P}}{\overline{B P}} \times 100$
c) Standard heterosis $=\frac{\overline{F 1}-\overline{C P}}{\overline{C P}} \times 100$

Where,
$\overline{\text { F1 }} \quad=$ Mean performance of F1 hybrid
$\overline{\mathrm{MP}} \quad=$ Mean mid-parental value i.e. $(\mathrm{P} 1+\mathrm{P} 2) / 2$
$\overline{\mathrm{BP}} \quad=$ Mean performance of better parent
$\overline{\mathrm{CP}} \quad=$ Mean performance of check parent
The significance of heterosis was tested with't' test.

RESULTS AND DISCUSSION

Estimates of heterosis over better parent (heterobeltiosis), mid parent (relative heterosis) and check variety (standard heterosis) expressed as percent increase or decrease are expressed for different characters in the Table 1and are described below.

1. Days to 75 \% heading

Seven hybrids exhibited significant negative heterosis over their mid- parental values. The highest significant negative heterosis was expressed by the cross DBW $88 \times$ WH $1105(-5.243 \%)$ followed by UP $2848 \times$ UP 2672 (-2.868). Highest significant positive heterosis showed by HD $3123 \times$ HD 3059 (3.661). Nine hybrids showed significant negative heterosis over their respective earlier parent. Cross DBW $88 \times$ WH $1105(-5.948)$ showed highest significant negative heterobeltiosis followed by UP $2696 \times$ HD 3059 (3.746). HD $3123 \times$ HD 3059 showed highest significant positive heterosis over better parent. Four hybrids, DBW $88 \times$ WH 1105 (-4.178), UP $2554 \times$ HD 3059 (-3.796), UP $2848 \times$ UP 2672 (-3.792) and WH $1139 \times$ UP 2672 (-3.034) exhibited significant negative standard heterosis over the checkHD 2967 and crosses DBW $88 \times$ WH 1105 (-6.988) followed by UP $2848 \times$ UP 2672 (-6.622) and UP $2554 \times$ HD 3059 (6.621) exhibited highest negative heterosis over check UP 2526.In high intensity crop rotation areas of northern India, where most of wheat area is under assured irrigation, the major emphasis is on the

Tabassum et al

development of short duration varieties. Cross DBW $88 \times$ WH 1105 showed highest values of significant negative relative heterosis, heterobeltiosis and standard heterosis over both the checks in relation to early flowering $[6,10]$.

Days to Maturity

Two crosses PBW $644 \times$ UP 2672 (-2.558), and PBW $644 \times$ HD 3059 (-2.557) possessed significant negative values of heterobeltiosis for days to maturity. None of the hybrids showed significant positive or negative heterosis over the check HD 2967 and UP 2526.Presently, development of early maturing genotypes seems to be a priority to fit the wheat varieties in intensive cropping system and for this purpose negative heterotic response for maturity is desirable. Crosses, PBW $644 \times$ UP 2672 and PBW 644 \times HD 3059 identified as early maturing [11, 12].

Number of effective tillers per plant

Twelve crosses showed positive significant heterosis over the mid parental values and highest value was observed for DBW $88 \times$ WH 1105 (29.365)followed by HD $3091 \times$ WH 1105 (20.715).Nine crosses exhibited positive significant heterobeltiosis and highest value was found for DBW $88 \times$ WH 1105 (28.684).Twenty two hybrids out of thirty six had significant positive standard heterosis over the check HD 2967 in which cross DBW $88 \times$ WH 1105 (35.494) showed highest value. However, wenty five crosses had significant positive standard heterosis over check UP 2526and cross DBW $88 \times$ WH 1105 (40.517) possessed highest value followed by WH $1126 \times$ UP2672 (34.195). Higher number of effective tillers per plant is one of the most important and desirable characters required for getting high yield. The results revealed that the cross DBW $88 \times$ WH 1105 showed highest significant positive relative heterosis, heterobeltiosis and standard heterosis over the check HD 2967 and UP 2526 [12, 13, 14].

Plant height

Eleven crosses showed significant positive mid parent heterosis out of which WH $1126 \times$ HD 3059 (9.512) showed highest heterosis followed by UP $2554 \times$ HD 3059 (9.496). UP $2554 \times$ HD 3059 (8.938) showed significant positive heterosis and DBW $88 \times$ HD 3059 (-7.710)showed significant negative heterosis over the better parent. Significant negative economic heterosis exhibited by only one cross DBW $88 \times$ HD 3059 (-7.153) and ten crosses possessed positive significant heterosis over the check HD 2967. The cross PBW $644 \times$ UP 2672 (13.074) exhibited highest significant positive heterosis followed by DBW $88 \times$ UP 2672 (10.345).Significant negative heterosis over the check UP 2526 exhibited by only two crosses namely, DBW $88 \times$ HD 3059 (-9.040) and PBW $681 \times$ WH 1105 (-7.063) and five crosses possessed positive significant heterosis, out of those PBW $644 \times$ UP 2672 (10.766) exhibited highest significant positive economic heterosis. Significant negative heterosis for plant height is desirable in the development of dwarf, high yielding varieties with lodging resistance, high fertilizer responsiveness and it should be stiff strawed. For plant height negative significant relative heterosis, heterobeltiosis and standard heterosis exhibited by cross DBW $88 \times$ HD 3059. PBW $681 \times$ WH 1105 also showed significant negative standard heterosis over the check UP 2526[15,16, 17].

Flag leaf area

Out of thirty six F1 hybrids, twenty four showed positive significant relative heterosis and highest value was observed forWH $1126 \times$ UP2672 (36.815) followed by UP $2554 \times$ WH 1105 (35.401).Twelve crosses exhibited significant positive heterobeltiosis and maximum value was observed for WH $1126 \times$ UP 2672 (34.102).Thirty four hybrids out of thirty six showed significant positive economic heterosis over check HD 2967 and out of these, cross UP $2425 \times$ UP 2672 (73.470) showed highest value followed by UP 2696 \times UP 2672 (67.546).The standard heterosis over the check UP 2526 varied from -33.529 to 28.199. Seven hybrids showed significant positive standard heterosis over UP 2526 and crosses UP $2425 \times$ UP 2672 (28.199) possessed highest positive value over the check. Flag leaf area is important for grain filling because it is responsible for more than 70% photosynthesis. Highest significant positive relative heterosis and heterobeltiosis were recorded in the cross WH $1126 \times$ UP 2672, and highest positive standard heterosis over both checks by hybrid UP $2425 \times$ UP 2672 .

Peduncle length

Twenty four crosses showed significant positive relative heterosis out of which HD $3091 \times$ HD 3059 (12.759) exhibited highest value followed by UP $2425 \times$ HD 3059 (10.516). Significant positive heterobeltiosiswas possessed by five crosses out of which HD $3091 \times$ HD 3059 (11.477) showed highest value. Significant standard heterosis over the check HD 2967 for peduncle length was observed for twenty seven crosses and UP $2425 \times$ UP 2672 (26.051) exhibited highest value followed by PBW $644 \times$ UP 2672 (23.913).Standard heterosis over the check UP 2526 was found positively significant for four crosses in which UP $2425 \times$ UP 2672 (9.854)exhibited highest significant positive value. For peduncle length highest positive relative heterosis and heterobeltiosis was exhibited by the cross HD $3091 \times$ HD

Tabassum et al

3059 and highest significant positive standard heterosis over the checks HD 2967 and UP 2526 by the cross UP $2425 \times$ UP 2672.

Spike length

Thirty one hybrids showed significant positive relative heterosis and cross UP $2425 \times$ UP 2672 (15.567) showed highest significant positive heterosis followed by WH 1126× UP 2672 (13.182).Significant positive heterobeltiosis was observed for twenty seven crosses and highest value was observed for DBW $88 \times$ UP 2672 (12.685). Significant positive economic heterosis over check HD 2967 was observed for thirty five crosses and highest value was exhibited by UP $2425 \times$ UP 2672 (21.367).Standard heterosis over the check UP 2526 was found positively significant for three hybrids namely UP $2425 \times$ UP 2672 (4.809), WH $1126 \times$ UP 2672 (1.292) and UP $2848 \times$ UP 2672 (2.656). Spike length is one of the most important yield components that contributes towards productivity and should be taken into consideration during the selection procedure. Thus, significant positive heterosis for spike length is desirable. Highest significant positive relative heterosis and standard heterosis over the check UP 2526 was shown by the cross UP $2425 \times$ UP 2672 and heterobeltiosis by cross DBW $88 \times$ UP 2672 [12,18, 14, 15].

Number of spikelets per spike

Twenty two crosses out of thirty six showed significant positive relative heterosis and PBW $644 \times \mathrm{WH}$ 1105 (9.936) showed highest significant positive value. Fourteen crosses exhibited significant positive heterobeltiosis and cross WH $1126 \times$ WH 1105 (7.717) showed maximum value. Significant positive standard heterosis for number of spikelets per spike over the check HD 2967 was showed by four hybrids out of which PBW $644 \times$ WH 1105 (4.273) with highest value. Twelve F1s were identified with significant standard heterosis over check UP 2526 out of which PBW $644 \times$ WH 1105 (8.218)exhibited highest value. Number of spikelets per spike is an important yield contributing character. Therefore, positive heterosis for this character is essential for the development of improved cultivars. In present study, highest positive significant relative heterosis showed by PBW $644 \times$ WH 1105, heterobeltiosis by the cross WH $1126 \times$ WH 1105. PBW6 $44 \times$ WH1105 showed highest significant positive standard heterosis over checks HD 2967 and UP 2526 [12,15, 18].

Number of grains per spike

Out of 36 F1s studied, twenty three possessed positive significant relative heterosis and cross UP $2696 \times$ HD 3059 (57.692) expressed highest value. Fourteen hybrids showed significant positive heterobeltiosis and the same cross UP $2696 \times$ HD 3059 (49.635) exhibited highest positive significant heterosis over better parent. Twenty two hybrids showed significant positive economic heterosis and the cross HD 3123 \times WH 1105 (58.003) exhibited highest positive value followed by UP $2696 \times$ HD 3059 (56.476) over the check HD 2967.Whereas,Two crosses HD $3123 \times$ WH 1105 (19.646) and UP $2696 \times$ HD 3059 (18.490) showed significant positive standard heterosis over the check UP 2526 .Number of grains per spike is one of the important component characters of grain yield, so heterosis in positive direction for this character is desirable to develop high yielding cultivars. UP $2696 \times$ HD 3059 expressed highest positive and significant relative heterosis and heterobeltiosis, HD $3123 \times$ WH 1105 showed highest positive significant standard heterosis over both the checks [14,15, 19].

Grain weight per spike

All the thirty six crosses showed significant values for relative heterosis and out of these eighteen exhibited positive values. UP $2845 \times$ UP 2672 (54.902) expressed highest significant positive relative heterosis followed by UP $2845 \times$ HD 3059 (53.846).Nine hybrids showed significant positive heterosis over better parent and cross UP $2845 \times$ UP 2672 (41.071) exhibited highest value. One cross PBW $644 \times$ HD 3059 showed equality in grain weight per spike with better parent. Eight hybrids showed significant positive economic heterosis over the check HD 2967 and the cross UP $2845 \times$ HD 3059 (31.752) exhibited highest value. Eight crosses showed significant positive economic heterosis over the check UP 2526 and UP $2845 \times$ HD 3059 (26.742) showed highest value. Grain weight per spike is also one of the important yield contributing traits; positive heterosis for the character is desirable for increasing yield. The cross UP $2845 \times$ UP 2672 exhibited the high magnitude of positive relative heterosis and heterobeltiosis, UP 2845 \times HD 3059 highest standard heterosis over both the checks [14,19].

1000-grain weight

For this trait, fourteen hybrids possessed significant positive mid parent heterosis and HD $3123 \times \mathrm{WH}$ 1105 (27.757) expressed highest value. Significant positive heterobeltiosis was observed in eleven hybrids and the cross showing highest positive value was HD $3123 \times$ WH 1105 (19.149).Out of 36 crosses, twenty four hybrids showed significant positive economic heterosis over the check HD 2967 and WH $1139 \times$ HD 3059 (29.096) exhibited highest value. Seventeen crosses showed significant positive heterosis over the check UP 2526 and HD $3091 \times$ HD 3059 (18.486) exhibited highest value. Positive
heterosis is favoured in case of 1000-grain weight, as it has direct effect on grain yield. The cross HD 3123 \times WH 1105 exhibited highest magnitude of positive relative heterosis and HD $3123 \times$ WH 1105 showed highest heterobeltiosis. HD $3091 \times$ HD3059 and WH $1139 \times$ HD 3059 exhibited highest magnitude of standard heterosis over the checks HD 2967 and UP 2526 respectively $[10,14,19]$.

Table 1: Estimation of heterosis for different characters in bread wheat

crosses	1. Days to 75\% heading				2. Days to maturity				3. Tillers/plant			
		1 0 0 0 0 0 0 0 0 0 0.				T 0 0 0 0 0 0 0 0 0 0.		n 0 0 0 0 0 0 0 0 0 0 0		1 0 0 0 0 0 0 0 0 0. 0.		
			$\begin{gathered} \text { HD296 } \\ 7 \end{gathered}$	$\begin{gathered} \text { UP252 } \\ 6 \end{gathered}$			$\begin{gathered} \text { HD296 } \\ 7 \end{gathered}$	$\begin{gathered} \text { UP252 } \\ 6 \end{gathered}$			$\begin{gathered} \text { HD296 } \\ 7 \end{gathered}$	$\begin{gathered} \text { UP252 } \\ 6 \end{gathered}$
$\begin{gathered} \mathrm{HD} 3091 \times \mathrm{WH} 11 \\ 05 \end{gathered}$	-0.952	-1.887	-1.523	4.413*	0.26	1.039	-0.522	-1.297	$\underset{* *}{20.715}$	7.713**	$\underset{* *}{12.219}$	$\underset{* *}{16.379}$
$\begin{gathered} \text { HD3091×UP267 } \\ 2 \end{gathered}$	0.383	0.000	0.7644	3.680^{*}	$\begin{gathered} 1.16 \\ 7 \\ \hline \end{gathered}$	1.295	-0.525	-1.297	$4.545^{* *}$	17.848 **	$6.899^{* *}$	$3.448^{* *}$
$\begin{gathered} \text { HD3091×HD305 } \\ 9 \\ \hline \end{gathered}$	1.538	1.538	0.005	-2.944*	$\begin{gathered} 0.26 \\ 0 \end{gathered}$	0.260	0.786	-0.002	7.786**	16.111	16.320	13.218
$\begin{gathered} \text { WH1139×WH11 } \\ 05 \\ \hline \end{gathered}$	1.354	-1.132	-0.766	3.680*	$\begin{gathered} 0.39 \\ 2 \end{gathered}$	0.518	0.268	-0.520	0.744	$5.581^{* *}$	$\underset{* *}{12.496}$	$\underset{* *}{16.666}$
$\begin{gathered} \text { WH1139×UP26 } \\ 72 \\ \hline \end{gathered}$	-0.389	2.290*	3.034^{*}	5.885*	$\begin{gathered} 1.03 \\ 6 \end{gathered}$	1.036	1.837	1.033	23.480 **	25.349	11.055 **	$7.758^{* *}$
$\begin{gathered} \text { WH1139×HD30 } \\ 59 \\ \hline \end{gathered}$	0.391	-1.154	-2.658	5.518*	$\begin{gathered} 0.13 \\ 0 \end{gathered}$	0.000	0.784	-0.002	$\underset{* *}{12.658}$	3.488**	$\underset{* *}{23.302}$	$\underset{* *}{27.873}$
$\begin{aligned} & \text { PBW681×WH11 } \\ & 05 \end{aligned}$	-0.385	-2.264	-1.892	4.783*	$\begin{gathered} 0.92 \\ 2 \end{gathered}$	0.789	0.004	-0.779	-2.632*	$3.646^{* *}$	2.521*	6.321**
$\begin{gathered} \text { PBW681×UP267 } \\ 2 \\ \hline \end{gathered}$	1.741	0.382	-0.385	3.312*	$\begin{gathered} 1.56 \\ 7 \end{gathered}$	0.777	1.563	0.774	$4.161^{* *}$	$7.090^{* *}$	5.292**	9.195**
$\begin{aligned} & \text { PBW681×HD30 } \\ & 59 \\ & \hline \end{aligned}$	0.971	0.000	-1.527	4.415*	$\begin{gathered} 0.91 \\ 5 \end{gathered}$	1.558	-1.054	-1.816	$5.349^{* *}$	$8.307^{* *}$	-2.438*	1.178
$\begin{gathered} \text { DBW88×WH110 } \\ 5 \\ \hline \end{gathered}$	5.243^{*}	5.948*	4.178*	6.988^{*}	$\begin{gathered} 0.13 \\ 0 \\ \hline \end{gathered}$	1.289	0.000	-0.779	$\underset{* *}{29.365}$	$\underset{* *}{28.684}$	35.494	$\underset{* *}{40.517}$
$\begin{gathered} \text { DBW88×UP267 } \\ 2 \\ \hline \end{gathered}$	2.448*	3.717*	-1.893	4.782*	$\begin{gathered} 0.25 \\ 8 \\ \hline \end{gathered}$	0.515	0.787	-0.002	32.066	34.474	25.741	22.988
$\begin{gathered} \text { DBW88×HD305 } \\ 9 \\ \hline \end{gathered}$	-0.567	-2.230	-0.383	$\underset{\substack{-3.312 * \\ *}}{ }$	$\begin{gathered} 1.94 \\ 0 \\ \hline \end{gathered}$	2.320	-1.058	-1.816	$\underset{* *}{18.919}$	$\underset{* *}{15.789}$	$\underset{* *}{21.917}$	$\underset{* *}{26.436}$
$\begin{gathered} \text { WH1126×WH11 } \\ 05 \\ \hline \end{gathered}$	-0.576	-2.264	-1.894	4.782*	$\begin{gathered} 0.52 \\ 4 \end{gathered}$	0.260	0.268	-0.520	$\underset{* *}{12.929}$	9.674**	$\underset{* *}{21.252}$	$\underset{* *}{25.747}$
$\begin{gathered} \text { WH1126×UP26 } \\ 72 \\ \hline \end{gathered}$	-0.386	-1.527	-2.275	5.150*	$\begin{gathered} - \\ 0.38 \\ 9 \\ \hline \end{gathered}$	0.518	0.266	-0.520	$\underset{* *}{15.594}$	$\underset{* *}{14.181}$	$\underset{* *}{29.398}$	$\underset{* *}{34.195}$
$\begin{gathered} \text { WH1126×HD30 } \\ 59 \\ \hline \end{gathered}$	0.775	0.000	-1.522	4.415*	$\begin{gathered} 0.26 \\ 0 \end{gathered}$	0.260	0.785	-0.002	1.186	$3.759^{* *}$	6.400**	$\underset{* *}{10.344}$
$\begin{aligned} & \text { UP2848×WH11 } \\ & 05 \\ & \hline \end{aligned}$	-0.760	-1.509	-1.141	- 4.047^{*} $*$	$\begin{gathered} 0.52 \\ 9 \end{gathered}$	0.264	-0.790	-1.556	15.909 **	19.952	$7.730^{* *}$	$4.310^{* *}$
$\begin{gathered} \text { UP2848×UP267 } \\ 2 \\ \hline \end{gathered}$	$\underset{\substack{- \\ \hline \\ *}}{ }$	${ }_{\substack{-3.053 * \\ *}}$	- $3.792 *$ $*$	$\underset{*}{\text { 6.622* }}$	$\begin{gathered} 1.18 \\ 0 \end{gathered}$	0.000	0.785	-0.002	$5.358^{* *}$	$6.154^{* *}$	8.174**	$\underset{* *}{12.183}$

Tabassum et al

$\begin{gathered} \text { UP2848×HD305 } \\ 9 \end{gathered}$	$3.263 *$ $*$	3.065*	1.893	-1.106	$\begin{gathered} 0.78 \\ 7 \end{gathered}$	0.260	0.261	-0.520	$4.149^{* *}$	10.601	3.047*	6.867**
$\begin{gathered} \text { PBW644×WH11 } \\ 05 \\ \hline \end{gathered}$	-1.313	-1.866	-0.385	3.312*	$\begin{gathered} 0.26 \\ 0 \end{gathered}$	1.279	0.785	-0.002	$\underset{* *}{13.941}$	$\underset{* *}{13.032}$	$\underset{* *}{17.761}$	$\underset{* *}{22.126}$
$\begin{gathered} \text { PBW644×UP267 } \\ 2 \\ \hline \end{gathered}$	-0.377	-1.493	0.001	-2.944*	1.93 1	2.558	-0.526	-1.297	4.750**	-0.245	$\underset{* *}{13.050}$	$\underset{* *}{17.241}$
$\begin{gathered} \text { PBW644×HD30 } \\ 59 \\ \hline \end{gathered}$	2.273*	3.731*	-2.273	5.150^{*}	$\begin{gathered} 1.80 \\ 4 \end{gathered}$	2.557	-0.522	-1.297	$8.767^{* *}$	10.000	$7.730^{* *}$	$4.310^{* *}$
$\begin{gathered} \hline \text { HD3123 } \times \text { WH11 } \\ 05 \end{gathered}$	1.145	0.000	0.384	-2.577*	$\begin{gathered} 0.26 \\ 3 \end{gathered}$	0.000	-0.525	-1.297	-1.164	$3.778^{* *}$	5.846**	9.770**
$\begin{gathered} \hline \text { HD3123×UP267 } \\ 2 \end{gathered}$	2.111*	1.527	0.767	-2.209	$\begin{gathered} \hline 0.13 \\ 0 \end{gathered}$	0.518	0.268	-0.520	$3.226^{* *}$	$4.645^{* *}$	8.063**	12.068 $* *$
$\begin{gathered} \text { HD3123×HD305 } \\ 9 \end{gathered}$	${ }_{\text {3.661 }}^{*}$	3.462^{*}	1.895	-1.106	$\begin{gathered} 0.52 \\ 2 \\ \hline \end{gathered}$	1.039	-0.528	-1.297	-0.396	$5.038^{* *}$	4.461**	8.333**
$\begin{gathered} \hline \text { UP2845×WH11 } \\ 05 \\ \hline \end{gathered}$	0.379	0.000	0.384	-2.577*	$\begin{gathered} \hline 0.91 \\ 5 \\ \hline \end{gathered}$	0.000	0.780	-0.002	-1.215	-2.660	1.413	5.172**
$\begin{gathered} \text { UP2845×UP267 } \\ 2 \end{gathered}$	0.190	0.000	-0.385	3.312*	$\begin{gathered} 0.00 \\ 0 \end{gathered}$	0.000	0.784	-0.002	16.796	21.271	10.778	7.471**
$\begin{gathered} \text { UP2845×HD305 } \\ 9 \end{gathered}$	2.103*	1.521	1.149	-1.841	$\begin{gathered} 0.13 \\ 0 \end{gathered}$	0.000	0.784	-0.002	2.345*	1.644	2.798*	6.609**
$\begin{gathered} \text { UP2 } 2696 \times \mathrm{WH} 11 \\ 05 \\ \hline \end{gathered}$	-1.128	-1.498	-0.384	3.312*	$\begin{gathered} 0.13 \\ 0 \end{gathered}$	1.786	0.528	-0.261	4.132**	$4.512^{* *}$	0.277	3.994**
$\begin{gathered} \text { UP2696×UP267 } \\ 2 \\ \hline \end{gathered}$	2.836*	3.745*	-2.654	5.510*	$\begin{gathered} 0.77 \\ 1 \\ \hline \end{gathered}$	1.531	0.789	-0.002	$6.091^{* *}$	$9.535^{* *}$	2.521*	6.321**
$\begin{gathered} \text { UP2696×HD305 } \\ 9 \end{gathered}$	2.467*	3.746*	-2.655	5.517*	$\begin{gathered} 0.38 \\ 6 \end{gathered}$	1.276	1.044	0.256	$\underset{* *}{13.667}$	$\underset{* *}{10.818}$	$\underset{* *}{16.375}$	$\underset{* *}{20.689}$
$\begin{aligned} & \text { UP2425×WH11 } \\ & 05 \\ & \hline \end{aligned}$	-1.866	2.952*	-0.386	3.312*	$\begin{gathered} 0.64 \\ 9 \end{gathered}$	1.020	1.307	0.515	$\underset{* *}{13.726}$	7.979**	$\underset{* *}{12.496}$	$\underset{* *}{16.666}$
$\begin{gathered} \hline \text { UP2425×UP267 } \\ 2 \end{gathered}$	1.689	0.000	2.654	-0.371	$\begin{gathered} 0.00 \\ 0 \end{gathered}$	0.765	1.568	0.774	6.024**	-3.178*	9.725**	$\underset{*}{13.793}$
$\begin{gathered} \text { UP2425×HD305 } \\ 9 \end{gathered}$	1.318	-0.738	1.895	-1.106	$\begin{gathered} \hline 0.64 \\ 4 \end{gathered}$	0.255	2.098	1.292	$5.731^{* *}$	$8.611^{* *}$	8.839**	$5.459^{* *}$
$\begin{gathered} \text { UP2554×WH11 } \\ 05 \\ \hline \end{gathered}$	3.053*	1.887	2.275	-0.738	$\begin{gathered} 1.95 \\ 1 \end{gathered}$	0.513	2.352	1.551	2.983**	$6.596^{* *}$	-2.687*	0.919
$\begin{gathered} \text { UP2554×UP267 } \\ 2 \end{gathered}$	0.960	0.382	-0.385	- $\begin{array}{c}\text { 3.312* } \\ *\end{array}$	$\begin{gathered} 1.03 \\ 1 \end{gathered}$	0.513	2.357	1.551	$4.359^{* *}$	11.491	0.304	4.022**
$\begin{gathered} \text { UP2554×HD305 } \\ 9 \\ \hline \end{gathered}$	2.119*	2.308*	- 3.796^{*} $*$	$\underset{\substack{\text { 6.621* } \\ *}}{ }$	- 	2.051	-0.263	-1.038	$8.475^{* *}$	$\underset{\substack{\text { 10.000 } \\ * *}}{\text { - }}$	$\underset{\substack{\text { 10. } \\ \\ * *}}{ }$	$6.896^{* *}$

Continued.
Table 1 Continued

crosses	4. Plant height				5. Flag leaf area				6. Peduncle length			
		T 0 0 0 0 0 0 0 0 0 0 0				1 0 0 0 0 0 0 0 0 0. 0.		$\begin{aligned} & \overrightarrow{0} 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$		T 0 0 0 0 0 0 0 0 0 0		
			$\begin{gathered} \text { HD296 } \\ 7 \end{gathered}$	$\begin{gathered} \text { UP252 } \\ 6 \end{gathered}$			$\begin{gathered} \text { HD296 } \\ 7 \end{gathered}$	$\begin{gathered} \text { UP252 } \\ 6 \end{gathered}$			$\begin{gathered} \text { HD296 } \\ 7 \end{gathered}$	$\begin{gathered} \text { UP252 } \\ 6 \end{gathered}$
$\begin{gathered} \text { HD3091×WH11 } \\ 05 \end{gathered}$	5.020	3.780	-0.752	-2.770	$\begin{gathered} 28.634 \\ * * \end{gathered}$	$\begin{gathered} 23.463 \\ * * \end{gathered}$	$\begin{gathered} 37.685 \\ * * \end{gathered}$	1.754	0.424	5.952*	-1.652	14.295 **
$\begin{gathered} \text { HD3091×UP26 } \\ 72 \end{gathered}$	2.283	2.532	2.903	0.807	$\begin{gathered} 18.337 \\ * * \end{gathered}$	8.604	$\begin{gathered} 33.306 \\ * * \end{gathered}$	-1.482	$6.626 *$ $*$	-3.327	$\underset{*}{8.525^{*}}$	5.436*

$\begin{gathered} \text { HD3091×HD30 } \\ 59 \end{gathered}$	$\begin{gathered} 6.384 \\ * \end{gathered}$	6.154	1.964	-0.114	$\begin{gathered} 24.565 \\ * * \end{gathered}$	$\begin{gathered} 19.387 \\ * * \end{gathered}$	$\begin{gathered} 22.432 \\ * * \end{gathered}$	-9.516*	$\begin{gathered} 12.759 \\ * * \end{gathered}$	$\begin{gathered} 11.477 \\ * * \end{gathered}$	1.774	11.318 **
$\begin{gathered} \text { WH1139×WH1 } \\ 105 \end{gathered}$	6.601	3.657	2.452	0.365	23.693	$\underset{* *}{20.512}$	$\begin{gathered} 41.681 \\ * * \end{gathered}$	4.708	3.039*	-1.184	12.565 $* *$	-1.916
$\begin{gathered} \text { WH1139×UP26 } \\ 72 \end{gathered}$	5.445	2.079	7.771*	5.577	3.259	1.081	24.077	-8.306	3.670*	2.914	17.235 $* *$	2.164
$\begin{gathered} \text { WH1139×HD30 } \\ 59 \end{gathered}$	6.310 $*$	4.811	3.593	1.482	$\begin{gathered} 11.460 \\ * * \end{gathered}$	0.301	$\begin{gathered} 17.923 \\ * * \end{gathered}$	12.851	4.045^{*} $*$	7.231*	$5.678 *$ $*$	7.915*
$\begin{gathered} \text { PBW } 681 \times \text { WH1 } \\ 105 \end{gathered}$	2.624	6.508	-5.133	-7.063*	$\begin{gathered} 10.912 \\ * * \end{gathered}$	-4.300	$\underset{* *}{47.065}$	8.687*	-3.757*	5.770^{*}	2.845	10.388 **
$\begin{gathered} \text { PBW681×UP26 } \\ 72 \end{gathered}$	0.589	2.521	2.914	0.818	-2.780	12.564 **	34.374	-0.697	-1.406	-2.773	$9.147 *$ $*$	4.895*
$\begin{gathered} \text { PBW681×HD30 } \\ 59 \end{gathered}$	3.698	0.928	2.415	0.328	12.695	29.638	8.135	20.089 **	-0.837	9.886*	-1.655	14.299 **
$\begin{gathered} \text { DBW88×WH11 } \\ 05 \end{gathered}$	1.991	1.673	-1.085	-3.091	3.655	3.333	$\underset{* *}{15.247}$	14.835	6.645^{*}	13.036	9.065*	20.758 **
$\begin{gathered} \text { DBW88×UP267 } \\ 2 \end{gathered}$	7.034	4.515	10.345	8.096*	6.138	0.985	23.951	-8.393	$\begin{gathered} 10.512 \\ * * \end{gathered}$	-0.314	$\begin{gathered} 11.900 \\ * * \end{gathered}$	-2.493
$\begin{gathered} \text { DBW88×HD305 } \\ 9 \end{gathered}$	5.572	7.710	-7.153*	9.040*	$\underset{* *}{21.175}$	$\begin{gathered} 11.991 \\ * * \end{gathered}$	$\underset{* *}{24.124}$	-8.273	2.428	1.839	8.085*	19.905 **
$\begin{gathered} \text { WH1126×WH1 } \\ 105 \end{gathered}$	2.523	3.336	1.913	-0.165	19.655	16.429	37.248	1.427	0.049	-1.256	6.033^{*} $*$	-7.604
$\begin{gathered} \text { WH1126×UP26 } \\ 72 \end{gathered}$	1.856	1.783	7.463*	5.270	36.815	34.102	64.600	21.648	9.400*	7.024^{*}	20.145	4.695*
$\begin{gathered} \text { WH1126×HD30 } \\ 59 \end{gathered}$	$\begin{gathered} 9.512 \\ * * \end{gathered}$	4.643	$\begin{gathered} 10.322 \\ * * \end{gathered}$	8.074*	$\begin{gathered} 16.406 \\ * * \end{gathered}$	4.630	$\begin{gathered} 23.336 \\ * * \end{gathered}$	-8.851*	9.055*	-0.164	$\begin{gathered} 7.206^{*} \\ * \end{gathered}$	6.585*
$\begin{gathered} \text { UP2848×WH11 } \\ 05 \end{gathered}$	2.985	2.121	1.463	-0.608	$\begin{gathered} 30.506 \\ * * \end{gathered}$	$\begin{gathered} 18.185 \\ * * \end{gathered}$	$\begin{gathered} 62.484 \\ * * \end{gathered}$	$\underset{* *}{20.078}$	-1.147	4.613*	7.275*	6.526*
$\begin{gathered} \text { UP2848×UP267 } \\ 2 \end{gathered}$	3.581	2.639	8.362*	6.156	21.374	14.870	57.924	16.710	2.493	2.399	15.164	0.356
$\begin{gathered} \text { UP2848×HD30 } \\ 59 \end{gathered}$	$\begin{gathered} 6.561 \\ * \end{gathered}$	2.652	6.401	4.238	-5.326	20.288 **	9.594*	19.010 **	$6.173 *$ $*$	4.797*	7.075*	- 6.704* $*$
$\begin{gathered} \text { PBW } 644 \times \text { WH1 } \\ 105 \end{gathered}$	1.984	5.280	3.143	1.040	8.387*	-1.680	34.662	-0.479	1.078	-2.638	9.904^{*} $*$	-4.234*
$\begin{gathered} \text { PBW644×UP26 } \\ 72 \end{gathered}$	5.442	3.838	13.074	10.766	6.883	1.335	38.794	2.572	10.083	9.779*	23.913	7.984^{*}
$\begin{gathered} \text { PBW644×HD30 } \\ 59 \end{gathered}$	$\begin{gathered} 6.338 \\ * \end{gathered}$	0.069	8.964*	6.746*	$\begin{gathered} 12.969 \\ * * \end{gathered}$	-4.738	$\begin{gathered} 30.477 \\ * * \end{gathered}$	-3.575	$6.294 *$ $*$	4.844*	7.414*	- 6.404^{*} $*$
$\begin{gathered} \mathrm{HD} 3123 \times \mathrm{WH} 11 \\ 05 \end{gathered}$	2.385	1.541	-0.433	-2.452	3.524	-0.931	$\begin{gathered} 20.885 \\ * * \end{gathered}$	- 10.660 $*$	$5.981 *$ $*$	0.724	5.333*	8.210*
$\begin{gathered} \text { HD3123×UP26 } \\ 72 \end{gathered}$	0.291	1.819	3.662	1.545	5.068	4.758	28.586	-4.970	$9.146 *$ $*$	0.370	$\underset{* *}{12.673}$	-1.824
$\begin{gathered} \text { HD3123×HD30 } \\ 59 \end{gathered}$	2.654	0.074	1.212	-0.852	$\begin{gathered} 12.698 \\ * * \end{gathered}$	-0.230	$\begin{gathered} 21.746 \\ * * \end{gathered}$	10.028	4.751*	1.982	-3.933*	16.285
$\begin{gathered} \text { UP2845×WH11 } \\ 05 \end{gathered}$	6.814	4.684	1.812	-0.261	$\underset{* *}{18.378}$	5.459	$\begin{gathered} 50.447 \\ * * \end{gathered}$	11.183	1.845	1.290	5.922*	- $7.695 *$ $*$
$\begin{gathered} \text { UP2845×UP267 } \\ 2 \end{gathered}$	5.031	0.892	6.524	4.348	-2.334	-9.150*	29.608	-4.218	$\underset{*}{6.109^{*}}$	1.941	14.435	-0.286

$\begin{gathered} \text { UP2845×HD30 } \\ 59 \end{gathered}$	5.571	4.917	2.045	-0.040	8.107*	10.318	$\begin{gathered} 27.947 \\ * * \end{gathered}$	-5.450	$\begin{gathered} 8.993^{*} \\ * \end{gathered}$	1.505	4.995*	8.514*
$\begin{gathered} \text { UP2696×WH11 } \\ 05 \end{gathered}$	2.245	5.294	3.734	1.619	14.817	1.928	46.588	8.327	4.293* $*$	-2.106	16.694	1.696
$\begin{gathered} \text { UP2696×UP267 } \\ 2 \end{gathered}$	2.118	0.275	9.835*	7.594*	$\begin{gathered} 25.708 \\ * * \end{gathered}$	$\begin{gathered} 16.503 \\ * * \end{gathered}$	$\begin{gathered} \hline 67.546 \\ * * \end{gathered}$	$\begin{gathered} 23.817 \\ * * \end{gathered}$	5.764^{*}	2.681	22.404	$6.665 *$ $*$
$\begin{gathered} \text { UP2696×HD30 } \\ 59 \\ \hline \end{gathered}$	4.542	1.891	7.465*	5.270	1.110	16.390	$\begin{gathered} 20.246 \\ * * \end{gathered}$	11.140	7.417*	6.092*	$\begin{gathered} 11.945 \\ * * \end{gathered}$	-2.457
$\begin{gathered} \text { UP2425×WH11 } \\ 05 \end{gathered}$	3.532	1.209	1.552	-0.520	13.717	3.040	41.472	4.556	0.370	6.055*	$\underset{* *}{12.675}$	-1.827
$\begin{gathered} \text { UP2425×UP267 } \\ 2 \end{gathered}$	1.988	3.281	2.113	0.033	33.413	26.340 **	73.470	28.199	8.579*	5.104*	26.051	9.854*
$\begin{gathered} \text { UP2425×HD30 } \\ 59 \end{gathered}$	3.920	0.513	3.322	1.213	30.783	10.173	51.273	11.794	10.516	-3.633*	15.572	0.7141
$\begin{gathered} \text { UP } 2554 \times \text { WH11 } \\ 05 \end{gathered}$	$\begin{gathered} 7.333 \\ * \end{gathered}$	6.376	1.136	-0.925	35.401	$\begin{gathered} 13.437 \\ * * \end{gathered}$	$\begin{gathered} 26.506 \\ * * \end{gathered}$	-6.507	6.418*	1.984	6.652^{*}	7.064*
$\begin{gathered} \text { UP2554×UP267 } \\ 2 \end{gathered}$	7.450	2.104	7.804*	5.602	24.959	0.829	23.767	-8.534	7.278*	-0.555	11.633	-2.720
$\begin{gathered} \text { UP } 2554 \times \text { HD } 30 \\ 59 \end{gathered}$	$\begin{gathered} 9.496 \\ * * \end{gathered}$	$\underset{* *}{8.938}$	4.635	2.504	6.209	-4.345	10.062	33.529	$8.969 *$ $*$	5.195*	0.845	- 12.127 $* *$

Continued.
Table 1 Continued...........

crosses	7. Spike length				8. Spikelets/spike				9. Grains/spike			
		$\begin{aligned} & \text { T1 } \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 . \\ & \vdots .0 \end{aligned}$						$\begin{aligned} & \overrightarrow{0} \tilde{0} \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & \omega \\ & \omega \end{aligned}$		T 0 0 0 0 0 0 0 0 0 0.		
			$\begin{aligned} & \text { HD296 } \\ & 7 \end{aligned}$	$\begin{aligned} & \hline \text { UP252 } \\ & 6 \\ & \hline \end{aligned}$			$\begin{aligned} & \text { HD296 } \\ & 7 \end{aligned}$	$\begin{aligned} & \hline \text { UP25 } \\ & 26 \end{aligned}$			$\begin{aligned} & \text { HD296 } \\ & 7 \end{aligned}$	$\begin{aligned} & \text { UP252 } \\ & 6 \\ & \hline \end{aligned}$
$\begin{gathered} \text { HD3091×WH1 } \\ 105 \\ \hline \end{gathered}$	${ }_{\text {7.234* }}^{*}$	$3.279 *$ $*$	4.744*	9.547*	0.651	1.278	6.060^{*}	2.508*	$\underset{* *}{17.054}$	$14.394 *$ $*$	$\underset{* *}{15.258}$	12.721
$\begin{gathered} \text { HD3091×UP26 } \\ 72 \\ \hline \end{gathered}$	${ }_{\text {6.250* }}^{*}$	$\underset{*}{2.466^{*}}$	3.634*	10.504	0.980	3.195	7.893*	4.401*	23.944	28.947*	17.563	37.575
$\begin{gathered} \text { HD3091×HD30 } \\ 59 \\ \hline \end{gathered}$	-0.284	3.836*	2.748*	16.008	3.395	6.567	4.855*	-1.246	21.190	22.628*	19.090	38.731
$\begin{gathered} \text { WH1139×WH1 } \\ 105 \\ \hline \end{gathered}$	$\begin{gathered} 7.945^{*} \\ * \end{gathered}$	7.650*	9.171*	5.719*	$\underset{* *}{6.463}$	3.987	4.855*	-1.246	5.042*	-0.794	-4.587	27.749
$\begin{gathered} \text { WH1139×UP26 } \\ 72 \\ \hline \end{gathered}$	$\underset{*}{2.058}$	${ }_{*}^{1.918}$	3.082^{*} $*$	10.983	$\underset{* *}{4.949}$	$\underset{* *}{2.843}$	6.523^{*}	2.981*	$\underset{* *}{17.424}$	1.974	$\underset{* *}{18.311}$	10.409 **
$\begin{gathered} \text { WH1139×HD3 } \\ 059 \end{gathered}$	4.774^{*} $*$	$\begin{gathered} 4.630^{*} \\ * \end{gathered}$	$\underset{*}{5.825^{*}}$	$\underset{*}{\text { 8.614* }}$	$\begin{gathered} 1.286 \\ * \end{gathered}$	5.970	4.242*	-0.615	13.253	21.168*	17.563	37.575
$\begin{gathered} \text { PBW } 681 \times \text { WH1 } \\ 105 \\ \hline \end{gathered}$	$\begin{gathered} 3.656^{*} \\ * \end{gathered}$	0.591	$\begin{gathered} 8.424^{*} \\ * \end{gathered}$	6.365*	$\begin{gathered} 1.378 \\ * \end{gathered}$	2.074	3.858*	-0.205	$\underset{*}{-}$	- 18.012* $*$	0.755	23.703
$\begin{gathered} \text { PBW681×UP26 } \\ 72 \\ \hline \end{gathered}$	1.777*	4.807*	$\begin{gathered} 2.600^{*} \\ * \end{gathered}$	11.390	5.788	9.288	10.931	7.556*	58.466	59.627*	50.385	62.429
$\begin{gathered} \text { PBW681×HD3 } \\ 059 \end{gathered}$	-0.637	3.702*	$\underset{*}{3.805^{*}}$	10.361	3.040	$\underset{* *}{4.776}$	- 3.022* $*$	0.646	-1.342	$\stackrel{-}{8.696^{* *}}$	$\underset{* *}{12.205}$	$\underset{\substack{\text { 15.033 }}}{-}$
DBW88×WH11	4.396*	3.825*	5.294*	-	5.414	1.223	0.622	4.432*	18.216	11.189*	21.364	-

05	*	*	*	9.069*	**			*	**	*	**	$8.097 *$ $*$
$\begin{gathered} \text { DBW88×UP267 } \\ 2 \\ \hline \end{gathered}$	$\underset{* *}{13.150}$	$\underset{* *}{12.685}$	$\underset{* *}{13.972}$	1.579*	$\underset{* *}{2.332}$	2.049	2.636*	1.056	$\underset{* *}{15.932}$	$\underset{*}{12.500}{ }_{*}^{*}$	$\underset{* *}{30.524}$	-1.161
$\begin{gathered} \text { DBW88×HD30 } \\ 59 \\ \hline \end{gathered}$	5.997* $*$	$\underset{*}{5.562^{*}}$	6.765*	7.800*	$\underset{* *}{2.205}$	0.985	$2.847 *$ $*$	$\underset{*}{6.736}{ }_{*}$	1.429	-0.699	$\begin{gathered} 8.388^{*} \\ * \end{gathered}$	17.923
$\begin{gathered} \text { WH1126×WH1 } \\ 105 \\ \hline \end{gathered}$	${ }_{\text {8.224 }}{ }_{*}$	$\underset{*}{5.822^{*}}$	$\underset{* *}{12.303}$	3.015*	$\underset{* *}{9.477}$	$\underset{* *}{7.717}$	1.848*	5.694 $*$	$\underset{* *}{53.774}$	$29.365 *$ $*$	$\underset{* *}{24.417}$	5.785*
$\begin{gathered} \text { WH1126×UP26 } \\ 72 \\ \hline \end{gathered}$	$\underset{* *}{13.182}$	$\underset{* *}{10.522}$	$\underset{* *}{17.298}$	1.292*	$\underset{* *}{6.557}$	4.502	-1.203	2.539^{*} $*$	$6.723 *$ $*$	16.447*	-3.060	26.593
$\begin{gathered} \text { WH1126× HD3 } \\ 059 \end{gathered}$	$\begin{gathered} 7.834^{*} \\ * \end{gathered}$	5.300^{*} $*$	$\underset{* *}{11.758}$	3.493*	5.573	1.791 $*$	$3.667 *$ $*$	$\underset{*}{7.587^{*}}$	$\underset{* *}{44.395}$	$\underset{*}{17.518}{ }^{*}$	$\underset{* *}{22.891}$	6.941^{*}
$\begin{aligned} & \text { UP2848×WH11 } \\ & 05 \\ & \hline \end{aligned}$	$\underset{*}{2.807^{*}}$	4.329*	12.669	2.704*	3.175	1.216	-1.206	2.539^{*} $*$	9.244*	3.175	-0.770	24.859
$\begin{gathered} \text { UP2848×UP26 } \\ 72 \\ \hline \end{gathered}$	$\underset{*}{8.608^{*}}$	0.941	$\underset{* *}{18.874}$	2.656*	0.318	4.255	4.249*	-0.615	$\underset{* *}{33.333}$	$\underset{*}{15.789}{ }^{*}$	$\underset{* *}{34.340}$	1.728
$\begin{gathered} \text { UP2848×HD30 } \\ 59 \\ \hline \end{gathered}$	0.506	6.588*	$\underset{* *}{10.005}$	5.001*	0.301	1.194	0.622	4.432^{*} $*$	$\underset{* *}{46.185}$	$32.8_{* *}^{* *}$	$\underset{* *}{38.920}$	5.196
$\begin{gathered} \text { PBW } 644 \times \text { WH1 } \\ 105 \\ \hline \end{gathered}$	$\begin{gathered} 4.947^{*} \\ * \end{gathered}$	$\underset{*}{2.228}$	9.345*	5.575*	$\underset{* *}{9.936}$	$\underset{* *}{6.192}$	$\underset{*}{4.273}$	$\underset{*}{8.218}$	25.246	36.313*	12.983	34.107 **
$\begin{gathered} \text { PBW644×UP26 } \\ 72 \end{gathered}$	$\underset{* *}{10.599}$	$7.591 *$ $*$	$\underset{* *}{15.074}$	-0.622	0.643	3.096	4.855*	-1.246	-2.115	9.497**	$\underset{* *}{23.654}$	6.363*
$\begin{gathered} \text { PBW644×HD3 } \\ 059 \\ \hline \end{gathered}$	$\underset{*}{6.152^{*}}$	$3.264 *$ $*$	$\underset{* *}{10.452}$	4.618*	0.608	2.388	-0.592	$\underset{*}{3.170}{ }^{*}$	6.962^{*}	$\underset{\substack{\text { 17.877* } \\ *}}{ }$	$\underset{* *}{12.205}$	15.033
$\begin{gathered} \text { HD3123×WH1 } \\ 105 \\ \hline \end{gathered}$	5.303*	$\begin{gathered} 1.995^{*} \end{gathered}$	3.442*	10.672	$\underset{* *}{2.730}$	1.726	5.066*	1.467*	$\underset{* *}{55.056}$	46.809*	$\underset{* *}{58.003}$	$\underset{* *}{19.646}$
$\begin{gathered} \text { HD3123×UP26 } \\ 72 \\ \hline \end{gathered}$	$\underset{*}{7.910^{*}}$	$\underset{*}{4.658}{ }^{*}$	5.853*	8.590*	0.660	0.651	7.287*	3.770^{*}	35.836	38.158*	28.249	45.667
$\begin{gathered} \text { HD3123×HD30 } \\ 59 \\ \hline \end{gathered}$	$\begin{gathered} 5.367 * \\ * \end{gathered}$	$\underset{*}{2.192}$	$\underset{*}{3.355}$	10.744	${ }_{* *}^{3.115}$	1.194	0.624	$4.432 *$ $*$	$7.914 *$ $*$	6.383*	$\underset{* *}{14.495}$	13.299
$\begin{aligned} & \text { UP } 2845 \times \text { WH11 } \\ & 05 \\ & \hline \end{aligned}$	5.177*	$\underset{*}{4.891^{*}}$	6.951*	7.633*	$\underset{* *}{5.822}$	$\underset{* *}{2.658}$	6.065*	2.508*	$\underset{* *}{13.488}$	-3.175	6.877*	29.483
$\begin{gathered} \text { UP2845×UP26 } \\ 72 \\ \hline \end{gathered}$	4.775*	4.348^{*}	6.403*	$\underset{\substack{\text { 8.111* } \\ *}}{ }$	$\underset{* *}{4.811}$	$\underset{* *}{2.007}$	- $7.288 *$ $*$	$\underset{\substack{-3.770^{*} \\ *}}{ }$	4.564	17.105*	-3.824	27.171
$\begin{gathered} \text { UP2845×HD30 } \\ 59 \\ \hline \end{gathered}$	6.412^{*}	5.978*	8.064*	6.676*	$\underset{* *}{3.236}$	4.776	3.029*	0.646	$\underset{* *}{15.044}$	-5.109	-0.770	24.859
$\begin{aligned} & \text { UP2696×WH11 } \\ & 05 \\ & \hline \end{aligned}$	5.365*	4.645*	$\underset{*}{6.123^{*}}$	8.351*	0.327	1.286	6.673*	3.139*	$\underset{* *}{15.663}$	$\underset{*}{14.286}{ }^{*}$	$\underset{*}{9.915}$	16.767
$\begin{gathered} \text { UP2696×UP26 } \\ 72 \end{gathered}$	${ }_{\text {4.022 }}{ }^{*}$	$\underset{*}{3.452 *}$	$4.635 *$ $*$	9.643*	$\underset{* *}{5.902}$	$\underset{* *}{3.859}$	1.813*	1.908*	$8.364 *$ $*$	-1.974	$\underset{* *}{13.731}$	13.877
$\begin{gathered} \text { UP2696×HD30 } \\ 59 \\ \hline \end{gathered}$	$\underset{*}{1.653^{*}}$	1.096	2.244^{*} $*$	11.701	0.619	2.985	-1.205	2.539^{*} $*$	$\underset{* *}{57.692}$	49.635*	56.476	$\underset{* *}{18.490}$
$\begin{aligned} & \text { UP2425×WH11 } \\ & 05 \\ & \hline \end{aligned}$	$\underset{*}{6.983^{*}}$	$\begin{gathered} 3.308^{*} \\ * \end{gathered}$	$\underset{* *}{12.504}$	- 2.84* $*$	$\underset{* *}{9.931}$	6.645	- $423 *$ $*$	1.277	24.627	$\begin{gathered} 17.606^{*} \\ * \end{gathered}$	$\underset{* *}{27.471}$	-3.473
$\begin{gathered} \text { UP2425×UP26 } \\ 72 \\ \hline \end{gathered}$	$\underset{* *}{15.567}$	$\underset{* *}{11.450}$	$\underset{* *}{21.367}$	4.809*	$\underset{* *}{6.186}$	3.344	- $6.066 *$ $*$	- $\substack{\text { 2.508* } \\ *}$	$\underset{*}{8.163 *}$	4.605	$\underset{* *}{21.364}$	- 8.097 $*$
$\begin{gathered} \text { UP2425×HD30 } \\ 59 \\ \hline \end{gathered}$	$\begin{gathered} 8.918^{*} \\ \hline \end{gathered}$	$\begin{gathered} 5.038^{*} \\ * \end{gathered}$	$\underset{* *}{14.381}$	1.220*	1.942	9.552	- $7.893 *$ $*$	- 4.401^{*} $*$	-1.792	-3.521	4.572	$\underset{* *}{-}$

$\underset{05}{\text { UP2554×WH11 }}$	$\underset{* *}{10.335}$	$\begin{gathered} 7.924^{*} \\ * \end{gathered}$	$\begin{gathered} 9.459^{*} \\ * \end{gathered}$	5.479*	$\underset{* *}{2.640}$	$\underset{* *}{1.967}$	5.464*	1.877*	$\underset{* *}{32.468}$	$21.429 *$ $*$	16.784 $* *$	11.565
$\begin{gathered} \text { UP2554×UP26 } \\ 72 \\ \hline \end{gathered}$	$\underset{* *}{10.490}$	$\underset{*}{8.219^{*}}$	9.459*	- 5.49* $*$	$\underset{* *}{5.629}$	$\underset{* *}{4.590}$	$\underset{*}{3.027 *}$	0.646	$\underset{* *}{27.626}$	7.895**	$\underset{* *}{25.181}$	-5.207
$\begin{gathered} \text { UP2554×HD30 } \\ 59 \\ \hline \end{gathered}$	2.378*	0.274	1.415*	12.419	0.937	$\underset{*}{5.373}$	- 3.638 $*$	0.015	$\underset{* *}{19.835}$	5.839*	$\underset{* *}{10.678}$	16.189

Continued...........
Table 1 Continued...........

crosses	10. Grain weight/spike				11. 1000 grain weight				12. Biological yield/plant			
		0 0 0 0 0 0 0 0 0 0 0 0	$\begin{aligned} & \frac{\bar{\omega}}{0} \\ & \frac{0}{0} \end{aligned}$			$\begin{aligned} & \frac{1}{0} \\ & 0 \\ & 0 \\ & 0 \\ & \frac{0}{0} \\ & \frac{0}{0} \\ & 0 \\ & 0 . \end{aligned}$						
			$\begin{aligned} & \text { HD296 } \\ & 7 \\ & \hline \end{aligned}$	$\begin{aligned} & \text { UP252 } \\ & 6 \\ & \hline \end{aligned}$			$\begin{aligned} & \text { HD296 } \\ & 7 \\ & \hline \end{aligned}$	$\begin{aligned} & \text { UP252 } \\ & 6 \\ & \hline \end{aligned}$			$\begin{aligned} & \text { HD296 } \\ & 7 \\ & \hline \end{aligned}$	$\begin{aligned} & \text { UP252 } \\ & 6 \\ & \hline \end{aligned}$
$\begin{gathered} \text { HD3091×WH1 } \\ 105 \\ \hline \end{gathered}$	23.377	34.444	22.266	25.221	4.082*	18.023	$\underset{*}{5.216^{*}}$	3.431^{*}	$\underset{* *}{23.888}$	9.977	$\underset{*}{13.923}$	-1.439
$\begin{gathered} \text { HD3091×UP26 } \\ 72 \end{gathered}$	$\underset{* *}{32.727}$	$\underset{* *}{14.063}$	3.820^{*}	7.477*	31.928	34.302	15.678	22.608	10.352	-4.568	5.065	-9.102
$\begin{gathered} \text { HD3091×HD30 } \\ 59 \\ \hline \end{gathered}$	14.493	20.270	22.266	25.221	5.810^{*} $*$	0.581	$\underset{* *}{29.095}$	$\underset{* *}{18.486}$	-2.216	10.141	13.859	25.474
$\begin{gathered} \text { WH1139×WH1 } \\ 105 \end{gathered}$	9.202*	17.778	2.503*	6.210^{*}	24.113	33.125	20.155	26.717	2.464	-2.986	12.457 $*$	-2.706
$\begin{gathered} \text { WH1139×UP2 } \\ 672 \\ \hline \end{gathered}$	22.689	36.986	39.393	41.698	3.125*	3.125*	$\underset{* *}{15.663}$	6.157 $*$	30.662	32.404	21.644	32.210
$\begin{gathered} \text { WH1139× HD3 } \\ 059 \\ \hline \end{gathered}$	15.646	16.216	18.313	21.419	$9.841 *$ $*$	8.125*	$\underset{* *}{29.096}$	$\underset{* *}{18.485}$	$\underset{* *}{24.294}$	$\underset{*}{13.541}$	$\underset{* *}{31.615}$	$\begin{gathered} 13.868 \\ * \end{gathered}$
$\begin{gathered} \text { PBW } 681 \times W H 1 \\ 105 \\ \hline \end{gathered}$	19.126	20.430	2.503*	6.210^{*}	$\underset{* *}{17.886}$	$\underset{* *}{16.935}$	${ }_{\text {8.201 }}{ }^{*}$	-0.692	4.630	3.830	7.555	-6.948
$\begin{gathered} \text { PBW681×UP26 } \\ 72 \\ \hline \end{gathered}$	$\underset{* *}{26.619}$	5.376^{*}	$\underset{* *}{15.942}$	$\underset{* *}{11.533}$	6.338^{*}	16.875	-0.754	8.910*	6.954	3.025	$\underset{*}{13.424}$	-1.871
$\begin{gathered} \text { PBW681×HD3 } \\ 059 \\ \hline \end{gathered}$	29.341	36.559	22.266	25.221	$\underset{* *}{20.430}$	8.387*	$\underset{* *}{25.364}$	$\underset{* *}{15.061}$	-5.061	-7.919	-6.074	18.739
$\begin{gathered} \text { DBW88×WH11 } \\ 05 \\ \hline \end{gathered}$	1.987*	17.778	2.503*	6.210^{*}	9.929 $*$	3.125*	$\underset{* *}{15.663}$	$\underset{*}{6.157}{ }^{*}$	$\underset{* *}{25.522}$	$\underset{* *}{22.240}$	$\underset{* *}{26.625}$	9.551
$\begin{gathered} \text { DBW88×UP26 } \\ 72 \\ \hline \end{gathered}$	$\underset{* *}{10.280}$	3.279*	22.266	25.221	20.000	20.000	4.485*	12.335	$\underset{* *}{15.520}$	9.265	$\underset{* *}{20.294}$	4.073
$\begin{gathered} \text { DBW88×HD30 } \\ 59 \\ \hline \end{gathered}$	$\begin{gathered} 3.704^{*} \\ * \end{gathered}$	5.405*	7.773*	11.280	$\underset{*}{4.127}{ }^{*}$	$\underset{*}{2.500^{*}}$	$\underset{* *}{22.379}$	$\underset{* *}{12.321}$	$\underset{* *}{19.589}$	$\underset{* *}{18.183}$	$\underset{* *}{16.021}$	0.377
$\begin{gathered} \text { WH1126×WH1 } \\ 105 \\ \hline \end{gathered}$	1.370^{*}	17.778	$\underset{\substack{-2.503 * \\ *}}{ }$	6.210^{*}	$\underset{* *}{15.217}$	$\begin{gathered} 3.247^{*} \\ * \end{gathered}$	$\underset{* *}{18.648}$	$\begin{gathered} 8.897^{*} \\ * \end{gathered}$	$\underset{* *}{24.228}$	$\underset{* *}{21.853}$	$\underset{* *}{31.243}$	$\underset{*}{13.546}$
$\begin{gathered} \text { WH1126×UP2 } \\ 672 \\ \hline \end{gathered}$	$\underset{* *}{21.569}$	$\underset{* *}{10.714}$	18.313	21.419	7.006*	8.750*	$8.947 *$ $*$	-0.007	$\underset{*}{12.467}$	11.247	$\underset{* *}{22.476}$	5.961
$\begin{gathered} \text { WH1126×HD3 } \\ 059 \end{gathered}$	35.385	$\underset{* *}{18.919}$	$\underset{* *}{15.942}$	$\underset{* *}{11.533}$	9.385*	9.032*	$\underset{* *}{26.110}$	15.745	3.445	-2.243	5.290	-8.907
$\begin{gathered} \text { UP2848×WH1 } \\ 105 \\ \hline \end{gathered}$	27.950 **	35.556	23.583	26.489	7.958*	20.359	-0.754	8.910*	13.057	15.100	-7.718	20.161
UP2848×UP26	4.274*	-	-	-	1.529*	-0.599	23.871	13.691	9.894	9.197	20.219	4.008

Tabassum et al

72	*	14.085	19.631	$\underset{* *}{22.686}$			**	**			**	
$\begin{gathered} \text { UP2848×HD30 } \\ 59 \\ \hline \end{gathered}$	3.448^{*}	5.405^{*}	7.773*	11.280	9.317*	12.575	$8.947 *$ $*$	-0.007	24.404	28.867	22.682	33.107
$\begin{gathered} \text { PBW } 644 \times \text { WH1 } \\ 105 \end{gathered}$	$\underset{*}{9.202}$	1.111*	$\underset{* *}{17.259}$	$\underset{* *}{12.801}$	18.367	30.233	10.454	17.814	$\underset{* *}{19.074}$	$\underset{* *}{15.979}$	$\underset{* *}{20.139}$	3.940
$\begin{gathered} \text { PBW644×UP26 } \\ 72 \\ \hline \end{gathered}$	17.647	32.877	35.441	37.896	23.494	26.163	5.231*	13.020	-5.253	10.369	-1.323	14.628
$\begin{gathered} \text { PBW644×HD3 } \\ 059 \end{gathered}$	$\underset{*}{0.680^{*}}$	0.000	2.503*	6.210^{*}	10.092	14.535	$9.693 *$ $*$	0.678	$\underset{* *}{34.261}$	$\underset{* *}{32.661}$	$\underset{* *}{30.276}$	$\underset{*}{12.710}$
$\begin{gathered} \text { HD3123×WH1 } \\ 105 \\ \hline \end{gathered}$	4.636*	12.222	$4.084 *$ $*$	$\underset{*}{0.126}{ }^{*}$	27.757	$\underset{* *}{19.149}$	$\underset{* *}{25.364}$	$\underset{* *}{15.061}$	-7.312	12.211	1.687	12.025
$\begin{gathered} \text { HD3123×UP26 } \\ 72 \\ \hline \end{gathered}$	23.364	32.787	45.981	48.035	21.595	26.250	11.947	19.184	10.122	12.348	1.528	12.162
$\begin{gathered} \text { HD3123×HD30 } \\ 59 \\ \hline \end{gathered}$	14.074	21.622	23.583	26.489	$\underset{*}{8.108^{*}}$	${ }_{3.226}^{*}$	$\underset{* *}{19.394}$	9.582^{*}	4.001	-4.964	10.082	-4.762
$\begin{gathered} \text { UP2845×WH1 } \\ 105 \\ \hline \end{gathered}$	$\underset{* *}{16.438}$	5.556*	$\underset{* *}{11.989}$	$7.731 *$ $*$	21.502	32.749	14.186	21.238	9.467	6.682	10.509	-4.392
$\begin{gathered} \text { UP2845×UP26 } \\ 72 \\ \hline \end{gathered}$	$\underset{* *}{54.902}$	$\underset{* *}{41.071}$	4.084*	$\underset{*}{0.126}$	13.595	16.374	$6.708 *$ $*$	2.062*	13.627	18.246	-9.994	22.131
$\begin{gathered} \text { UP2845×HD30 } \\ 59 \\ \hline \end{gathered}$	53.846	$\underset{* *}{35.135}$	$\underset{* *}{31.752}$	26.742	-1.227	5.848*	$\underset{* *}{20.140}$	$\underset{* *}{10.266}$	-7.582	-8.736	10.272	22.371
$\begin{gathered} \text { UP2696×WH1 } \\ 105 \\ \hline \end{gathered}$	22.667	35.556	23.583	26.489	$\underset{* *}{12.741}$	6.569^{*} $*$	8.947^{*}	-0.007	15.018	20.054	17.185	28.352
$\begin{gathered} \text { UP2696×UP26 } \\ 72 \\ \hline \end{gathered}$	$\underset{* *}{20.755}$	6.667*	15.678	18.884	$4.377 *$ $*$	- $\begin{array}{c}3.125^{*} \\ *\end{array}$	$\underset{* *}{15.663}$	6.157*	$\underset{* *}{30.625}$	$\underset{* *}{19.484}$	$\underset{* *}{31.544}$	13.806
$\begin{gathered} \text { UP2696×HD30 } \\ 59 \\ \hline \end{gathered}$	$\underset{* *}{22.388}$	$\underset{* *}{10.811}$	$\underset{* *}{8.0368}$	$3.929 *$ $*$	16.438	9.677 $*$	$\underset{* *}{26.856}$	16.430	4.931	2.441	-1.798	15.039 **
$\begin{gathered} \text { UP2425×WH1 } \\ 105 \\ \hline \end{gathered}$	0.680^{*}	18.889	3.820*	7.477*	13.699	- $2.353 *$ $*$	$\underset{* *}{23.871}$	$\underset{* *}{13.691}$	$\underset{* *}{30.012}$	$\underset{*}{14.213}$	$\underset{* *}{18.310}$	2.357
$\begin{gathered} \text { UP2425×UP26 } \\ 72 \\ \hline \end{gathered}$	$\underset{* *}{12.621}$	1.754*	23.583	26.489	29.091	31.176	12.693	19.869	$\underset{* *}{22.508}$	4.881	15.467 $*$	-0.103
$\begin{gathered} \text { UP2425×HD30 } \\ 59 \\ \hline \end{gathered}$	19.084 **	28.378	30.171	32.826	41.538	44.118	29.110	34.936	$\underset{*}{11.013}$	0.909	-3.267	16.310
$\begin{gathered} \text { UP2554×WH1 } \\ 105 \\ \hline \end{gathered}$	34.211	44.444	34.123	36.628	17.391	25.974	14.932	21.923	13.618	18.043	15.103	26.550
$\begin{gathered} \text { UP2554×UP26 } \\ 72 \\ \hline \end{gathered}$	$\underset{* *}{40.741}$	$\underset{* *}{22.581}$	0.131^{*}	- $\substack{\text { 3.675* } \\ *}$	8.280 $*$	$\underset{*}{6.250}$	$\underset{* *}{26.856}$	$\underset{* *}{16.430}$	-1.566	-9.218	-0.055	- $\substack{13.532 \\ *}$
$\begin{gathered} \text { UP2554×HD30 } \\ 59 \end{gathered}$	10.294	17.568	19.631	22.686	0.971	0.645	$\underset{* *}{16.409}$	6.842^{*}	$\underset{\text { c* }}{-}$	$\underset{* *}{-}$	22.547	32.991

Continued..........
Table 1 Continued...........

	crosses	13. Grain yield/plant				14. Harvest index			
			T 0 0 0 0 0 0 0 0 0. 0.				$\begin{aligned} & \overline{1} \\ & \frac{0}{0} \\ & \frac{0}{0} \\ & \frac{0}{0} \\ & \frac{0}{1} \\ & 0 . \\ & \frac{0}{n} \end{aligned}$		$\begin{aligned} & \text { W } \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & \omega \\ & \omega \end{aligned}$
				HD2967	UP2526			HD2967	UP2526
1	HD3091×WH1105	4.186	1.932	16.503**	22.146**	-16.740**	-27.534**	0.092	16.392**
2	HD3091×UP2672	-9.557**	-11.422**	1.240	6.144*	-20.144**	-32.091**	-6.197*	9.078**
3	HD3091×HD3059	-7.033**	-11.899**	0.695	5.572*	-6.131*	-17.695**	13.692**	32.206**
4	WH1139×WH1105	0.024	-3.766	13.859**	19.374**	-1.602	-3.016	-0.764	15.396**
5	WH1139×UP2672	-16.630**	-19.707**	-5.001	-0.400	21.574**	20.000**	19.256**	38.676**
6	WH1139×HD3059	31.789**	22.886**	45.394**	52.436**	5.431*	3.039	7.265*	24.732**
7	PBW681×WH1105	6.027*	1.717	21.068**	26.932**	1.659	-3.256	9.586**	27.431**
8	PBW681×UP2672	7.338**	3.080	22.690**	28.633**	-0.032	-7.298*	5.005	22.105**
9	PBW681×HD3059	-0.856	-7.809**	9.730**	15.045**	4.300	0.079	13.355**	31.815**
10	DBW88×WH1105	51.437**	49.427**	63.396**	71.310**	20.349**	18.317**	25.292**	45.695**
11	DBW88×UP2672	37.560**	35.593**	48.583**	55.779**	19.083**	13.972**	20.689**	40.343**
12	DBW88×HD3059	39.530**	36.833**	45.653**	52.708**	15.953**	14.971**	21.746**	41.571**
13	WH1126×WH1105	23.870**	21.747**	33.129**	39.577**	-0.434	-3.789	-1.559	14.471**
14	WH1126×UP2672	17.872**	15.732**	26.819**	32.962**	4.011	3.268	-0.043	16.234**
15	WH1126×HD3059	28.811**	26.816**	33.919**	40.406**	24.407**	19.221**	24.116**	44.328**
16	UP2848×WH1105	5.501*	1.712	19.828**	25.632**	21.443**	19.436**	26.385**	46.966**
17	UP2848×UP2672	0.048	-3.447	13.750**	19.260**	-9.232**	-13.098**	-8.043**	6.932*
18	UP2848×HD3059	-7.738**	$-13.800^{* *}$	1.554	6.472*	21.993**	21.004**	28.045**	48.897**
19	PBW644×WH1105	23.339**	18.248**	40.938**	47.764**	3.068	-3.829	13.602**	32.102**
20	PBW644×UP2672	0.161	-3.876	14.568**	20.117**	5.183	-4.310	13.040**	31.448**
21	PBW644×HD3059	22.227**	13.583**	35.377**	41.935**	-9.069**	-14.468**	1.033	17.486**
22	HD3123×WH1105	14.853*	11.790**	22.240**	28.161**	24.831**	15.418**	18.086**	37.316**
23	HD3123×UP2672	24.717**	21.266**	32.884**	39.320**	37.300**	30.268**	26.102**	46.637**
24	HD3123×HD3059	17.895**	17.220**	21.341**	27.218**	10.307**	1.188	5.327	22.479**
25	UP2845×WH1105	13.379**	9.783**	20.046**	25.861**	4.142	3.626	6.032	23.298**
26	UP2845×UP2672	-9.398**	-12.362**	-3.966	0.686	5.657*	3.310	4.664	21.709**
27	UP2845 \times HD3059	0.067	0.027	2.439	7.401**	7.881**	6.432*	10.787**	28.828**
28	UP2696×WH1105	-8.034**	-14.257**	-6.241*	-1.700	8.607**	7.927*	10.435**	28.419**
29	UP2696×UP2672	10.795**	3.196	13.083**	18.560**	-15.272**	-17.047**	-16.190**	-2.542
30	UP2696×HD3059	-0.325	-4.115	-1.881	2.872	-3.644	-5.062	-1.172	14.922**
31	UP2425×WH1105	14.905**	5.683*	15.563**	21.160**	-11.808**	-16.302**	-4.659	10.867**
32	UP2425×UP2672	6.828**	-1.841	7.563**	12.773**	-13.466**	-19.969**	-8.827**	6.021
33	UP2425×HD3059	16.125**	10.148**	12.715**	18.174**	3.935	-0.548	13.304**	31.755**
34	UP2554×WH1105	6.484**	-1.147	8.095**	13.330*8	23.919**	21.537**	24.357**	44.608**
35	UP2554×UP2672	1.696	-5.683*	3.352	8.358**	5.285*	4.439	2.754	19.487**
36	UP2554×HD3059	-5.555*	$-9.549^{* *}$	-7.441**	-2.958	14.784**	11.633**	16.207**	35.130**

Biological yield per plant

For this trait, thirteen hybrids showed positive significant heterosis and PBW $644 \times$ HD 3059 (34.261)expressed highest heterosis in positive direction. Eight hybrids showed significant positive heterosis over better parent and cross showing highest positive value was PBW $644 \times$ HD 3059 (32.661).Fifteen crosses showed significant positive heterosis over the check HD 2967 and WH $1139 \times$ HD 3059 (31.615) showed highest value. Results of standard heterosis over the check UP 2526 revealed thatonly four hybrids showed significant positive heterosis and highest positive value was observed for WH $1139 \times$ HD 3059 (13.868).In general, higher biological yield can be correlated with higher economic yield. Hence, heterosis in positive direction is desirable. The cross PBW $644 \times$ HD 3059 showed highest positive significant value for relative heterosis and heterobeltiosis both and the cross $\mathrm{WH} 1139 \times \mathrm{HD}$ 3059 showed highest significant standard heterosis over both the checks [6, 17].

Grain yield per plant

Significant positive relative heterosis was exhibited by twenty one hybrids and the cross DBW $88 \times$ WH 1105 (51.437) identified as having maximum value. Significant positive heterobeltiosis was observed in fifteen hybrids and the cross showing highest positive value was DBW $88 \times$ WH 1105 (49.427).Standard
positive economic heterosis over the check HD 2967 was observed for twenty six crosses and cross DBW $88 \times$ WH 1105 (63.396) was identified having highest value followed by DBW $88 \times$ UP 2672 (48.583) and DBW $88 \times$ HD 3059 (45.653).Thirty one crosses showed significant positive heterosis over UP 2526. Highest positive significant standard heterosis was observed for DBW $88 \times \mathrm{WH} 1105$ (71.310) followed by DBW $88 \times$ UP2672 (55.779). When selection is performed, yield per plant receives the maximum attention. Therefore, positive heterosis for grain yield per plant is highly desirable. The results obtained revealed that the cross DBW $88 \times$ WH 1105 expressed highest significant positive relative heterosis, heterobeltiosis and standard heterosis over both the checks [14, 19, 20].

Harvest index

Seven crosses showed significant positive relative heterosis and the highest positive value was recorded forHD $3123 \times$ UP 2672 (37.300). Thirteen crosses out of thirty six exhibited positive heterosis over better parent and the cross showing highest positive heterosis was HD $3123 \times$ UP 2672 (30.268).Twenty four crosses exhibited significant positive heterosis over the check HD 2967 in which UP $2848 \times$ HD 3059 (28.045) observed with highest value. Likewise thirty four hybrids showed significant positive economic heterosis and the same cross UP $2848 \times$ HD 3059 (48.897) exhibited highest value. Higher value of harvest index is the indicator of better grain yield, so efforts should be concentrated for higher positive heterosis for harvest index. The cross HD $3123 \times$ UP 2672 exhibited highest positive significant relative heterosis and heterobeltiosis and UP $2848 \times$ HD 3059 showed highest positive standard heterosis over both checks namely HD 2967 and UP 2526 [14, 16, 21].

CONCLUSION

In the present investigation, relative heterosis, heterobeltiosis, and standard heterosis were observed for all the characters. Nineteen out of 36 F1s viz., DBW $88 \times$ WH 1105, PBW $644 \times$ UP 2672, PBW $644 \times$ HD 3059, DBW $88 \times$ HD 3059, PBW $681 \times$ WH 1105, HD $3091 \times$ HD 3059, UP $2425 \times$ UP 2672 , UP $2425 \times$ UP 2672 , DBW $88 \times$ UP 2672 , PBW $644 \times$ WH 1105, WH $1126 \times$ WH 1105, UP $2696 \times$ HD 3059, HD $3123 \times$ WH 1105, UP $2845 \times$ UP 2672, UP $2845 \times$ HD 3059, HD $3123 \times$ WH 1105, WH $1139 \times$ HD 3059, HD $3123 \times$ UP 2672, UP $2848 \times$ HD 3059 were recognized as the best heterotic hybrids for different characters. The best heterotic cross for grain yield per plant was DBW $88 \times$ WH 1105 followed by DBW $88 \times$ UP 2672, WH $1139 \times$ HD 3059, DBW $88 \times$ HD 3059 and PBW $644 \times$ WH 1105.The heterotic crosses maybe further exploited for the isolation of transgressive segregants.

REFERENCES

1. Tondon, J.P. and Rao, M.V. (1986). Organization of wheat research in India and its impact on twenty five years of coordinated wheat research, 1961-86. pp 1-33.
2. Lorenz, K.J. and Kulp, K. (1991). Handbook of serial science and technology. Marcel Dekker, Inc., New York, pp. 148-164.
3. Tabassum, Kumar, A., Kumar, A., Pangti, L. and Joshi, A. (2017). Evaluation of genetic variability in bread wheat (Triticum aestivumL. emThell) genotypes. Bull. Env.Pharmacol. Life Sci., 6 (3): 309-313.
4. Raj, P. and Kandalkar, V.S. 2013. Combining ability and heterosis analysis for grain yield and its components in wheat. Journal of Wheat Research, 5(1): 45-49.
5. Anonymous, 2016. Progress Report of All India Coordinated Wheat and Barley Improvement Project, 2015-16, Project Director's Report. Ed: G.P. Singh, ICAR-Indian Institite of Wheat and Barley Research, Karnal, India. p96.
6. Devi, E.L., Swati, Goel, P., Singh, M. and Jaiswal, J.P. (2013). Heterosis studies for yield and yield contributing traits in bread wheat (Triticum aestivum). The Bioscan., 8(3): 905-909.
7. Singh, B.D. (2013). Plant breeding Principles and methods. Kalyani Publishers, pp. 923.
8. Allard, R.W. (1960). Principles of Plant Breeding. John Wiley and Sons Inc. New York, pp. 138-142.
9. Turner, J R. (1953). A study on heterosis in upland cotton. II. Combining ability and inbreeding effects. Agronomy Journal, 45: 487-490.
10. Akinci, C. (2009). Hetrosis and combining ability estimates in 6×6 half diallel crosses of durum wheat (Triticum durumDesf.). Bulg. J. Agric.Sci., 15(1): 214-221.
11. Sayed El, E.A.M. (2004). A diallel cross analysis for some quantitative characters inbread wheat (Triticum aestivumL.) Egyptian J. Agric. Res., 82(4): 1665-1679.
12. Inamullah, M., Siraj-Ud-Din, F.,Hussain, G. and Ali, S. 2006. Combining ability analysis for important traits in bread wheat. Sarhad J. Agril., 22(1): 45-50.
13. Yadav, R.K. and Narsinghani, V.G. (2000). Hetrosis and inbreeding depression in wheat (Triticum aestivumL. and Triticum durum Desf.).Indian J. Genet., 60(3): 381-382.
14. Garg, P., Saharan, R.P., Gupta, M. and Munjal, R. 2015. Heterosis studies for grain yield and its components in wheat (TriticumaestivumL. em. Thell) under normal and drought conditions.The Bioscan, 10(2): 721-728.
15. Bao, Y.J., Ca, G.Y., Yang, X.,Qian, C. and Wang, S. (2009). Analysis on the combining ability and heritability of the spike character in wheat.Acta Agriculturae Shanghaii., 20(3); 32-36.

Tabassum et al

16. Singh, M., Devi, E.L., Aglawe, S., Kausar, N. and Behera, C. (2013). Estimation of heterosis in different crosses of bread wheat (Triticum aestivumL.).The Bioscan, 8(4): 1393-1401.
17. Kumar, D. and Kerkhi, S.A. (2014). Hetrosis studies for yield component traits and quality traits in spring wheat (Triticumaestivum L.). The Bioscan, 9(4): 1725-1731.
18. Ribadia, K.H. Ponika, H.P.,Dobariya, K.L. and Jivani, L.L. (2007). Combining ability through line x tester analysis in macaroni wheat (TriticumaestivumDesf).J. Maharashtra. Agril. Univ., 32(1): 34-38.
19. Akbar, M., Anwar, J., Hussain, M.,Iqbal, M.M. and Sabir, W. (2010). Heterosis and heterobeltiosis for grain yield improvement in bread wheat. J. Agric. Res., 48(1): 15-23.
20. Mahmood, Q., Lei, W.D., Qureshi, A.S., Khan, M.R., Hayat, Y., Jilani, G., Shamsi, I.H.,Tajammal, M.A. and Khan, M.D. (2006). Heterosis, correlation and path analysis of morphological and biochemical characters in wheat (Triticumaestivum L. em.Thell).Agril. J., 1(3): 180-185.
21. Kumar, A., Harshwardhan, Kumar, A. and Prasad, B. 2015. Heterotic performance of diallel F1 crosses over parents for yield and its contributing traits in bread wheat. Journal of Hill Agriculture, 6(1): 58-61.

CITATION OF THIS ARTICLE

Tabassum, Anil Kumar, Birendra Prasad and Deepanker Pandey. Study of heterotic performance of F_{1} crosses for grain yield and its component traits in bread wheat (Triticumaestivum L. emThell). Bull. Env. Pharmacol. Life Sci., Vol 8 [Suppl. 2] November 2019: S72-S85

